Ukrainian Mathematical Journal

, Volume 58, Issue 12, pp 1876–1890 | Cite as

Jacobi matrices associated with the inverse eigenvalue problem in the theory of singular perturbations of self-adjoint operators

  • V. D. Koshmanenko
  • H. V. Tuhai


We establish the relationship between the inverse eigenvalue problem and Jacobi matrices within the framework of the theory of singular perturbations of unbounded self-adjoint operators.


Eigenvalue Problem Jacobi Matrix Singular Perturbation Symmetric Operator Jacobi Matrice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Albeverio and V. Koshmanenko, “Singular rank one perturbations of self-adjoint operators and Krein theory of self-adjoint extensions,” Potent. Anal., 11, 279–287 (1999).zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    S. Albeverio and P. Kurasov, Singular Perturbations of Differential Operators and Solvable Schrödinger Type Operators, Cambridge University Press, Cambridge (2000).Google Scholar
  3. 3.
    V. D. Koshmanenko, “Towards the rank-one singular perturbations of self-adjoint extensions,” Ukr. Mat. Zh., 43, No. 11, 1559–1566 (1991).MathSciNetGoogle Scholar
  4. 4.
    V. D. Koshmanenko, Singular Bilinear Forms in Perturbation Theory of Self-Adjoint Operators [in Russian], Naukova Dumka, Kiev (1993).Google Scholar
  5. 5.
    V. Koshmanenko, “A variant of the inverse negative eigenvalue problem in singular perturbation theory,” Meth. Funct. Anal. Topol., 8, No. 1, 49–69 (2002).zbMATHMathSciNetGoogle Scholar
  6. 6.
    M. E. Dudkin and V. D. Koshmanenko, “On the point spectrum of self-adjoint operators that appears under singular perturbations of finite rank,” Ukr. Mat. Zh., 55, No. 9, 1269–1276 (2003).zbMATHMathSciNetGoogle Scholar
  7. 7.
    V. D. Koshmanenko and H. V. Tuhai, “On the structure of the resolvent of a singularly perturbed operator that solves an eigenvalue problem,” Ukr. Mat. Zh., 56, No. 9, 1292–1297 (2004).zbMATHCrossRefGoogle Scholar
  8. 8.
    S. Albeverio, A. Konstantinov, and V. Koshmanenko, “On inverse spectral theory for singularly perturbed operator: point spectrum,” Inverse Probl., 21, 1871–1878 (2005).zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    S. Albeverio, M. Dudkin, A. Konstantinov, and V. Koshmanenko, “On the point spectrum of H −2 singular perturbations,” Math. Nachr., 280, No. 1–2, 1–8 (2005).MathSciNetGoogle Scholar
  10. 10.
    L. Nizhnik, “The singular rank-one perturbations of self-adjoint operators” Meth. Funct. Anal. Topol., 7, No. 3, 54–66 (2001).zbMATHMathSciNetGoogle Scholar
  11. 11.
    Yu. M. Berezanskii, Expansion of Self-Adjoint Operators in Eigenfunctions [in Russian], Naukova Dumka, Kiev (1965).Google Scholar
  12. 12.
    V. Koshmanenko, “Singular operator as a parameter of self-adjoint extensions,” in: Proceedings of the Mark Krein International Conference on Operator Theory and Applications (Odessa, August 18–22, 1997), Birkhäuser, Basel (2000), pp. 205–223.Google Scholar
  13. 13.
    A. Posilicano, “A Krein-like formula for singular perturbations of self-adjoint operators and applications,” J. Funct. Anal., 183, 109–147 (2001).zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    T. V. Karataeva and V. D. Koshmanenko, “A generalized sum of operators,” Mat. Zametki, 66, No. 5, 671–681 (1999).MathSciNetGoogle Scholar
  15. 15.
    T. Kato, Perturbation Theory for Linear Operators, Springer, Berlin (1966).zbMATHGoogle Scholar
  16. 16.
    M. G. Krein, “Theory of self-adjoint extensions of semibounded Hermitian operators and its applications. I,” Mat. Sb., 20(62), No. 3, 431–495 (1947).MathSciNetGoogle Scholar
  17. 17.
    F. Gesztesy and B. Simon, “Rank-one perturbations at infinite coupling,” J. Funct. Anal., 128, 245–252 (1995).zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    V. D. Koshmanenko, “Singular perturbations with infinite coupling constant,” Funkts. Anal. Prilozhen., 33, No. 2, 81–84 (1999).MathSciNetGoogle Scholar
  19. 19.
    M. Reed and B. Simon, Methods of Modern Mathematical Physics, Vol. 1. Functional Analysis, Academic Press, New York (1972).Google Scholar
  20. 20.
    B. Simon, “The classical moment problem as a self-adjoint finite difference operator,” Adv. Math., 137, 82–203 (1998).zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Yu. M. Berezansky, “Some generalizations of the classical moment problem,” Integral Equat. Oper. Theory, 44, 255–289 (2002).zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • V. D. Koshmanenko
    • 1
  • H. V. Tuhai
    • 1
  1. 1.Institute of MathematicsUkrainian Academy of SciencesKyiv

Personalised recommendations