Advertisement

Ukrainian Mathematical Journal

, Volume 58, Issue 9, pp 1462–1470 | Cite as

On quadruples of projectors connected by a linear relation

  • K. A. Yusenko
Article

Abstract

We describe the set of γ ∈ ℝ for which there exist quadruples of projectors P i for a fixed collection of numbers αi   ℝ+, \(i = \overline {1,4} \), such that α1 P 1 + α2 P 2 + α3 P 3 + α3 P 4 = γI.

Keywords

Linear Relation Limit Point Dynkin Diagram Free Algebra Infinite Subset 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. V. Zavodovs’kyi and Yu. S. Samoilenko, “Theory of operators and involutive representations of algebras,” Ukr. Mat. Visn., 1, No. 4, 532–547 (2004).MathSciNetGoogle Scholar
  2. 2.
    S. A. Kruglyak and A. V. Roiter, “Locally scalar representations of graphs in the category of Hilbert spaces,” Funkts. Anal. Prilozhen., 39, No. 2, 13–30 (2005).MathSciNetGoogle Scholar
  3. 3.
    M. A. Vlasenko, A. S. Mellit, and Yu. S. Samoilenko, “On algebras generated by linearly connected generators with given spectrum,” Funkts. Anal. Prilozhen., 39, No. 3, 14–27 (2005).MathSciNetGoogle Scholar
  4. 4.
    S. A. Kruglyak, S. V. Popovich, and Yu. S. Samoilenko, “*-Representation of algebras associated with Dynkin graphs and Horn’s problem,” Uchen. Zap. Tavrich. Univ., Ser. Mat. Mekh. Inform. Kiber., 16(55), No. 2, 132–139 (2003).Google Scholar
  5. 5.
    A. A. Kirichenko, “On linear combinations of orthoprojectors,” Uchen. Zap. Tavrich. Univ., Ser. Mat. Mekh. Inform. Kiber., No. 2, 31–39 (2002).Google Scholar
  6. 6.
    S. A. Kruglyak, V. I. Rabanovich, and Yu. S. Samoilenko, “On sums of projectors,” Funkts. Anal. Prilozhen., 36, No. 3, 20–35 (2002).MathSciNetGoogle Scholar
  7. 7.
    V. S. Shulman, “On representations of limit relations,” Meth. Funct. Anal. Top., No. 4, 85–86 (2001).Google Scholar
  8. 8.
    V. Ostrovskyi and Yu. Samoilenko, “Introduction to the theory of representations of finitely presented *-algebras. I. Representations by bounded operators,” Revs. Math. Math Phys., 11, Part 1 (1999).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • K. A. Yusenko
    • 1
  1. 1.Institute of MathematicsUkrainian Academy of SciencesKyiv

Personalised recommendations