Advertisement

Ukrainian Mathematical Journal

, Volume 57, Issue 6, pp 923–935 | Cite as

Long-Time Behavior of Nonautonomous Fokker-Planck Equations and Cooling of Granular Gases

  • B. Lods
  • G. Toscani
Article
  • 34 Downloads

Abstract

We analyze the asymptotic behavior of linear Fokker-Planck equations with time-dependent coefficients. Relaxation towards a Maxwellian distribution with time-dependent temperature is shown under explicitly computable conditions. We apply this result to the study of Brownian motion in granular gases by showing that the Homogenous Cooling State attracts any solution at an algebraic rate.

Keywords

Brownian Motion Asymptotic Behavior Computable Condition Maxwellian Distribution Algebraic Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    H. Risken, The Fokker-Planck Equation. Methods of Solution and Applications, Springer, Berlin (1989).Google Scholar
  2. 2.
    W. T. Coffey, Yu. P. Kalmikov, and J. T. Waldron, The Langevin Equation with Applications in Physics Chemistry and Electrical Engineering, World Scientific, 1996.Google Scholar
  3. 3.
    A. Arnold, P. Markowich, G. Toscani, and A. Unterreiter, “On convex Sobolev inequalities and the rate of convergence to equilibrium for Fokker-Planck type equations,” Commun. Partial Different. Equat., 26, 43–100 (2001).MathSciNetGoogle Scholar
  4. 4.
    J. A. Carrillo and G. Toscani, “Exponential convergence toward equilibrium for homogeneous Fokker-Planck-type equations,” Math. Meth. Appl. Sci., 21, 1269–1286 (1998).MathSciNetGoogle Scholar
  5. 5.
    A. Arnold, J. A. Carrillo, L. Desvillettes, J. Dolbeault, A. Jungel, C. Lederman, P. A. Markowich, G. Toscani, and C. Villani, “Entropies and equilibria of many-particle systems: an essay on recent research,” Monatsh. Math., 142, 35–43 (2004).CrossRefMathSciNetGoogle Scholar
  6. 6.
    P. Alpatov and L. E. Reichl, “Spectral properties of a time-periodic Fokker-Planck equation,” Phys. Rev. E, 49, 2630–2638 (1994).CrossRefGoogle Scholar
  7. 7.
    J. Luczka and B. Zaborek, Brownian Motion: a Case of Temperature Fluctuations, Preprint arxiv: cond-mat/0406708v1 (2004).Google Scholar
  8. 8.
    J. J. Brey, J. W. Dufty, and A. Santos, “Kinetic models for granular flow,” J. Statist. Phys., 97, 281–322 (1999).CrossRefMathSciNetGoogle Scholar
  9. 9.
    J. L. Vazquez, “Asymptotic behaviour for the porous medium equation posed in the whole space,” J. Evol. Equat., 3, 67–118 (2003).zbMATHMathSciNetGoogle Scholar
  10. 10.
    A. V. Bobylev, C. Cercignani, and G. Toscani, “Proof of an asymptotic property of self-similar solutions of the Boltzmann equation for granular materials,” J. Statist. Phys., 111, 403–417 (2003).CrossRefMathSciNetGoogle Scholar
  11. 11.
    J. J. Brey, J. W. Dufty, and A. Santos, “Dissipative dynamics for hard spheres,” J. Statist. Phys., 87, 1051–1066 (1997).CrossRefMathSciNetGoogle Scholar
  12. 12.
    I. Goldhirsch, “Scales and kinetics of granular flows,” Chaos, 9, 659–672 (1999).CrossRefzbMATHGoogle Scholar
  13. 13.
    M. H. Ernst and R. Brito, “High energy tails for inelastic Maxwell models,” Europhys. Lett., 43, 497–502 (2002).Google Scholar
  14. 14.
    P. K. Haff, “Grain flow as a fluid-mechanical phenomenon,” J. Fluid Mech., 134, 401–430 (1983).zbMATHGoogle Scholar
  15. 15.
    C. Cercignani, The Boltzmann equation and its applications, Springer, New York (1988).Google Scholar
  16. 16.
    B. Lods and G. Toscani, “The dissipative linear Boltzmann equation for hard spheres,” J. Statist. Phys., 117, No.3, 635–664 (2004).CrossRefMathSciNetGoogle Scholar
  17. 17.
    M. H. Ernst and R. Brito, “Scaling solutions of inelastic Boltzmann equation with over-populated high energy tails,” J. Statist. Phys., 109, 407–432 (2002).MathSciNetGoogle Scholar
  18. 18.
    S. McNamara and W. R. Young, “Kinetics of a one-dimensional granular medium in the quasielastic limit,” Phys. Fluids A, 5, 34–45 (1993).MathSciNetGoogle Scholar
  19. 19.
    G. Toscani, “One-dimensional kinetic models of granular flows,” MMAN Math. Model. Numer. Anal., 34, 1277–1291 (2000).zbMATHMathSciNetGoogle Scholar
  20. 20.
    E. Caglioti and C. Villani, “Homogeneous cooling states are not always good approximations to granular flows,” Arch. Ration. Mech. and Anal., 163, 329–343 (2002).MathSciNetGoogle Scholar
  21. 21.
    Li Hailang and G. Toscani, “Long-time asymptotics of kinetic models of granular flows,” Arch. Ration. Mech. and Anal., 172, 407–428 (2004).MathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • B. Lods
    • 1
  • G. Toscani
    • 2
  1. 1.Politecnico TorinoTurinItaly
  2. 2.University of PaviaPaviaItaly

Personalised recommendations