Advertisement

Ukrainian Mathematical Journal

, Volume 57, Issue 6, pp 891–899 | Cite as

Quantum-Classical Wigner-Liouville Equation

  • R. Kapral
  • A. Sergi
Article
  • 136 Downloads

Abstract

We consider a quantum system that is partitioned into a subsystem and a bath. Starting from the Wigner transform of the von Neumann equation for the quantum-mechanical density matrix of the entire system, the quantum-classical Wigner-Liouville equation is obtained in the limit where the masses M of the bath particles are large as compared with the masses m of the subsystem particles. The structure of this equation is discussed and it is shown how the abstract operator form of the quantum-classical Liouville equation is obtained by taking the inverse Wigner transform on the subsystem. Solutions in terms of classical trajectory segments and quantum transition or momentum jumps are described.

Keywords

Density Matrix Quantum System Entire System Operator Form Liouville Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    J. C. Tully, Modern Methods for Multidimensional Dynamics Computations in Chemistry, World Scientific, New York (1998).Google Scholar
  2. 2.
    V. I. Gerasimenko, “Uncorrelated equations of motion of the quantum-classical systems,” Rept. Acad. Sci. Ukr. SSR, No. 10, 65–68 (1981).Google Scholar
  3. 3.
    V. I. Gerasimenko, “Dynamical equations of quantum-classical systems,” Theor. Math. Phys., 50, No.1, 77–87 (1982).CrossRefMathSciNetGoogle Scholar
  4. 4.
    D. Ya. Petrina, V. I. Gerasimenko, and V. Z. Enolskii, Sov. Phys. Dokl., 35, 925 (1990).MathSciNetGoogle Scholar
  5. 5.
    I. V. Aleksandrov, Z. Naturforsch, 36a, 902 (1981).Google Scholar
  6. 6.
    R. Kapral and G. Ciccotti, “Mixed quantum-classical dynamics,” J. Chem. Phys., 110, No.18, 8919–8929 (1999).CrossRefGoogle Scholar
  7. 7.
    R. Kapral and G. Ciccotti, “A statistical mechanical theory of quantum dynamics in classical environments,” in: P. Nielaba, M. Mareschal, and G. Ciccotti (editors), Bridging Time Scales: Molecular Simulations for the Next Decade, Springer, Berlin (2003).Google Scholar
  8. 8.
    D. Mac Kernan, G. Ciccotti, and R. Kapral, J. Phys.: Condens. Matt., 14, 9069 (2002).Google Scholar
  9. 9.
    S. Nielsen, R. Kapral, and G. Ciccotti, “Mixed quantum-classical surface hopping dynamics,” J. Chem. Phys., 112, No15, 6543–6553 (2000).CrossRefGoogle Scholar
  10. 10.
    V. S. Filinov, Y. V. Medvedev, and V. L. Kamskyi, Mol. Phys., 85, 711 (1995).Google Scholar
  11. 11.
    V. S. Filinov, Mol. Phys., 88, 1517–1529 (1996).Google Scholar
  12. 12.
    V. S. Filinov, S. Bonella, Y. E. Lozovik, A. Filinov, and I. Zacharov, Classical and Quantum Dynamics in Condensed Phase Simulations, World Scientific, Singapore (1998).Google Scholar
  13. 13.
    D. Mac Kernan, G. Ciccott, and R. Kapral, “Surface-hopping dynamics of a spin-boson system,” J. Chem. Phys., 116, 2346–2356 (2002).Google Scholar
  14. 14.
    A. Sergi and R. Kapral, “Quantum-classical dynamics of nonadiabatic chemical reactions,” J. Chem. Phys., 118, No.19, 8566–8575.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • R. Kapral
    • 1
  • A. Sergi
    • 1
  1. 1.University of TorontoTorontoCanada

Personalised recommendations