Advertisement

Ukrainian Mathematical Journal

, Volume 57, Issue 6, pp 859–868 | Cite as

On the Drift-Diffusion Model for a Two-Band Quantum Fluid at Zero Temperature

  • G. Ali
  • G. Frosali
  • C. Manzini
Article

Abstract

By using a scale transformation, we obtain hydrodynamic equations in the quasiclassical approximation from the two-band Schrodinger equation.

Keywords

Hydrodynamic Equation Zero Temperature Schrodinger Equation Scale Transformation Quasiclassical Approximation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    N. C. Kluksdahl, A. M. Kriman, D. K. Ferry, and C. Ringhofer, “Self-consistent study of the resonant-tunneling diode,” Phys. Rev. B, 39, No11, 7720–7735 (1989).CrossRefGoogle Scholar
  2. 2.
    M. Sweeney and J. M. Xu, “Resonant interband tunnel diodes,” Appl. Phys. Lett., 54, No6, 546–548 (1989).Google Scholar
  3. 3.
    R. Q. Yang, M. Sweeny, D. Day, and J. M. Xu, “Interband tunneling in heterostructure tunnel diodes,” IEEE Trans. Electron Devices., 38, No3, 442–446 (1991).CrossRefGoogle Scholar
  4. 4.
    L. Barletti, “Wigner envelope functions for electron transport in semiconductor devices,” Transp. Theory Statist. Phys., 32, No.3–4, 253–277 (2003).zbMATHMathSciNetGoogle Scholar
  5. 5.
    G. Borgioli, G. Frosali, and P. F. Zweifel, “Wigner approach to the two-band Kane model for a tunneling diode,” Transp. Theory Statist. Phys., 32, No.3–4, 347–366.Google Scholar
  6. 6.
    L. Demeio, L. Barletti, A. Bertoni, P. Bordone, and C. Jacoboni, “Wigner function approach to multiband transport in semiconductors,” Physica B, 314, 104–107 (2002).CrossRefGoogle Scholar
  7. 7.
    L. Demeio, P. Bordone, and C. Jacoboni, “Numerical simulation of an intervalley transition by the Wigner-function approach,” Semiconductor Sci. Technol., 19,1–3 (2004).Google Scholar
  8. 8.
    M. Modugno and O. Morandi, A Multiband Envelope Function Model for Quantum Transport in a Tunneling Diode, Preprint (2004).Google Scholar
  9. 9.
    E. O. Kane, “Energy band structure in p-type Germanium and Silicon,” J. Phys. Chem. Solids, 1, 82–89 (1956).CrossRefGoogle Scholar
  10. 10.
    E. O. Kane, “The k⋅p method,” in: R. K. Willardson and A. C. Bear (editors), Semiconductors and Semimetals, Vol. 1, Academic Press, New York (1966), pp. 75–100.Google Scholar
  11. 11.
    W. T. Wenckebach, Essentials of Semiconductor Physics, Wiley, Chichester (1999).Google Scholar
  12. 12.
    C. Y. Chao and S. L. Chuang, “Resonant tunneling of holes in the multiband effective-mass approximation,” Phys. Rev. B, 43, 7027–7039 (1991).Google Scholar
  13. 13.
    I. Gasser and P. Markowich, “Quantum hydrodynamics, Wigner transforms and the classical limit,” Asymptotic Analysis, 14, 97-116 (1997).Google Scholar
  14. 14.
    A. Jungel, Quasi-Hydrodynamic Semiconductor Equations, Birkhauser, Basel (2001).Google Scholar
  15. 15.
    G. Ali and G. Frosali, “On quantum hydrodynamic models for the two-band Kane system” (submitted).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • G. Ali
    • 1
  • G. Frosali
    • 2
  • C. Manzini
    • 3
  1. 1.Istituto per le Applicazioni del Calcolo “M. Picone”NaplesItaly
  2. 2.Universita di FirenzeFlorenceItaly
  3. 3.Scuola Normale SuperiorePisaItaly

Personalised recommendations