Ukrainian Mathematical Journal

, Volume 57, Issue 1, pp 18–34 | Cite as

Twist Functors and D-Branes

  • I. I. Burban
  • I. M. Burban


We discuss a categorical approach to the investigation of topological D-branes. Twist functors and their induced action on the cohomology ring of a manifold are studied. A nontrivial spherical object of the derived category of coherent sheaves of a reduced plane singular curve of degree 3 is constructed.


Categorical Approach Cohomology Ring Coherent Sheave Spherical Object Singular Curve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Zaslow, “Solitons and helices: search for a mathematical physics bridge,” Commun. Math. Phys., 175, 337–347 (1996).Google Scholar
  2. 2.
    M. Kontsevich, “Homological algebra of mirror symmetry,” in: Proceedings of the International Congress on Mathematics (Zurich, 1994) (1995), pp. 120–139.Google Scholar
  3. 3.
    J. Polchinski, “Dirichlet branes and Ramond-Ramond charges,” Phys. Rev. Lett., 75, 4724–4727 (1995); Preprint / arxiv: hep-th, No. 9510017 (1995).CrossRefPubMedGoogle Scholar
  4. 4.
    E. Witten, “D-branes and K-theory,” J. High Energy Phys., 9812, 19 (1998).Google Scholar
  5. 5.
    R. Minasian and G. Moore, “K-theory and Ramond-Ramond charges. D-branes and K-theory,” J. High Energy Phys., 11, 102 (1997); Preprint / arxiv: hep-th, No. 9710230 (1997).Google Scholar
  6. 6.
    D. A. Cox and S. Kaz, “Mirror symmetry and algebraic geometry,” Math. Surveys Monographs, Amer. Math. Soc., 68, 203 (1999).Google Scholar
  7. 7.
    A. Bondal and D. Orlov, Semiorthogonal Decompositions for Algebraic Varieties, Preprint / arxiv: math. AG, No. 9506006 (1995).Google Scholar
  8. 8.
    T. Bridgeland, “Flops and derived categories,” Invent. Math., 147, No.3, 613–632 (2002).CrossRefGoogle Scholar
  9. 9.
    P. Seidel and R. Thomas, “Braid group actions on derived categories of coherent sheaves,” Duke Math. J., 108, No.1, 37–108 (2001).CrossRefGoogle Scholar
  10. 10.
    H. Lenzing and H. Meltzer, “Sheaves on weighted projective lines of genus one and representations of a tubular algebra,” Can. Math. Soc. Conf. Proc., 14, 313–337 (1993).Google Scholar
  11. 11.
    A. Polishchuk, “Yang-Baxter equation and A -constraints,” Adv. Math., 168, 56–95 (2002).CrossRefGoogle Scholar
  12. 12.
    D. Orlov, “Derived categories of coherent sheaves and equivalences between them,” Usp. Mat. Nauk, 58, No.3, 89–172 (2003).Google Scholar
  13. 13.
    S. I. Gel’fand and Yu. I. Manin, Methods of Homological Algebra [in Russian], Nauka, Moscow (1988).Google Scholar
  14. 14.
    D. Orlov, “Equivalences of derived categories and K3 surfaces,” J. Math. Sci. (New York), 84, No.5, 1361–1381 (1997).Google Scholar
  15. 15.
    A. Dold, “Zur Homotopietheorie der Kettenkomplexe,” Math. Ann., 140, 278–298 (1960).CrossRefGoogle Scholar
  16. 16.
    S. Mukai, “On the moduli spaces of bundles on K3 surfaces I,” Vector Bundles on Algebraic Varieties, Stud. Math. Tata Inst. Fundam. Res., 11, 341–413 (1987).Google Scholar
  17. 17.
    S. Zube, “Exceptional sheaves on Enriques surfaces,” Math. Notes, 61, No.6, 693–699 (1994).Google Scholar
  18. 18.
    R. Hartshorne, Algebraic Geometry, Springer, New York (1977).Google Scholar
  19. 19.
    P. Griffiths and J. Harris, Principles of Algebraic Geometry [Russian translation], Mir, Moscow (1982).Google Scholar
  20. 20.
    I. I. Burban and Yu. A. Drozd, “Coherent sheaves on singular curves with nodal singularities,” Duke Math. J., 121, No.2, 189–229 (2004); Preprint / arxiv: math. AG, No. 0101140 (2001).CrossRefGoogle Scholar
  21. 21.
    I. I. Burban, “Stable bundles on a rational curve with one simple double point,” Ukr. Mat. Zh., 55, No.7, 867–875 (2003).Google Scholar
  22. 22.
    I. I. Burban, Yu. A. Drozd, and G.-M. Greuel, “Vector bundles on singular projective curves,” in: Application of Algebraic Geometry to Coding Theory, Physics and Computation, Kluwer, New York (2001), pp. 1–15.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • I. I. Burban
    • 1
    • 3
  • I. M. Burban
    • 2
  1. 1.Pierre and Marie Curie UniversityParisFrance
  2. 2.Institute for Theoretical PhysicsUkrainian National Academy of SciencesKyivUkraine
  3. 3.Taras Shevchenko Kyiv National UniversityKyivUkraine

Personalised recommendations