Advertisement

Ukrainian Mathematical Journal

, Volume 56, Issue 12, pp 2017–2027 | Cite as

On Homeomorphisms Realized by Certain Partial Differential Operators

  • D. A. Nomirovskii
Article

Abstract

For a sufficiently broad class of partial differential operators, we prove a theorem on homeomorphisms. Applications of this theorem to some classical operators are considered.

Keywords

Differential Operator Broad Class Classical Operator Partial Differential Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    M. O. Korpusov, Yu. D. Pletner, and A. G. Sveshnikov, “On nonstationary waves in media with anisotropic dispersion,” Zh. Vychisl. Mat. Mat. Fiz., 39, No.6, 1006–1022 (1999).Google Scholar
  2. 2.
    S. L. Sobolev, “On one new problem in mathematical physics,” Izv. Akad. Nauk SSSR, Ser. Mat., 18, No.1, 3–50 (1954).Google Scholar
  3. 3.
    S. A. Gabov, New Problems in Mathematical Theory of Waves [in Russian], Nauka, Moscow (1998).Google Scholar
  4. 4.
    S. I. Lyashko and N. Ya. Vityuk, “Impulse-point control of certain systems with distributed parameters,” Dopov. Akad. Nauk Ukr. RSR, Ser. A, No. 8, 61–63 (1985).Google Scholar
  5. 5.
    S. I. Lyashko, Generalized Control of Linear Systems [in Russian], Naukova Dumka, Kiev (1998).Google Scholar
  6. 6.
    I. I. Lyashko, V. P. Didenko, and O. E. Tsitritskii, Filtration of Noises [in Russian], Naukova Dumka, Kiev (1979).Google Scholar
  7. 7.
    M. O. Korpusov, Yu. D. Pletner, and A. G. Sveshnikov, “On quasistationary processes in conducting media without dispersion,” Zh. Vychisl. Mat. Mat. Fiz., 40, No.8, 1237–1249 (2000).Google Scholar
  8. 8.
    A. I. Kozhanov, Boundary-Value Problems for Odd-Order Equations of Mathematical Physics [in Russian], Novosibirsk University, Novosibirsk (1990).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • D. A. Nomirovskii
    • 1
  1. 1.Shevchenko Kiev National UniversityKiev

Personalised recommendations