Advertisement

Ukrainian Mathematical Journal

, Volume 56, Issue 12, pp 1885–1914 | Cite as

Orthogonal Approach to the Construction of the Theory of Generalized Functions of Infinitely Many Variables and the Poisson Analysis of White Noise

  • Yu. M. Berezans’kyi
  • V. A. Tesko
Article

Abstract

We develop an orthogonal approach to the construction of the theory of generalized functions of infinitely many variables (without using Jacobi fields) and apply it to the construction and investigation of the Poisson analysis of white noise.

Keywords

Generalize Function White Noise Jacobi Field Orthogonal Approach Poisson Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Yu. M. Berezans’kyi and V. A. Tesko, “Spaces of test and generalized functions related to generalized translation operators,” Ukr. Mat. Zh., 55, No.12, 1587–1657 (2003).Google Scholar
  2. 2.
    Y. Ito, “Generalized Poisson functionals,” Probab. Theory Related Fields, 77, 1–28 (1988).Google Scholar
  3. 3.
    Y. Ito and I. Kubo, “Calculus on Gaussian and Poisson white noise,” Nagoya Math. J., 111, 41–84 (1988).Google Scholar
  4. 4.
    G. F. Us, “Dual Appell systems in Poissonian analysis,” Meth. Funct. Anal. Top., 1, No.1, 93–108 (1995).Google Scholar
  5. 5.
    Yu. G. Kondratiev, J. L. da Silva, L. Streit, and G. F. Us, “Analysis on Poisson and Gamma spaces, ” Infinite Dim. Anal. Quantum Probab. Related Topics, 1, No.1, 91–117 (1998).CrossRefGoogle Scholar
  6. 6.
    S. Albeverio, Yu. G. Kondratiev, and M. Rockner, “Analysis and geometry on configuration spaces,” J. Funct. Anal., 154, No.2, 444–500 (1998).CrossRefGoogle Scholar
  7. 7.
    N. A. Kachanovsky, “On biorthogonal approach to a construction of non-Gaussian analysis and application to the Poisson analysis on the configuration space, ” Meth. Funct. Anal. Top., 6, No.2, 13–21 (2000).Google Scholar
  8. 8.
    T. Kuna, Studies in Configuration Space Analysis and Applications, Rheinische Friedrich-Wilhelms-Universitat, Bonn (1999).Google Scholar
  9. 9.
    Yu. G. Kondratiev, T. Kuna, and M. J. Oliveira, “Analytic aspects of Poissonian white noise analysis, ” Meth. Funct. Anal. Top., 8, No.4, 15–48 (2002).Google Scholar
  10. 10.
    M. J. Oliveira, Configuration Space Analysis and Poissonian White Noise Analysis, PhD Thesis, University of Lisbon, Lisbon (2002).Google Scholar
  11. 11.
    Yu. M. Berezans’kyi, “Poisson infinite-dimensional analysis as an example of analysis related to operators of generalized translation,” Funkts. Anal. Prilozhen., 32, No.3, 65–70 (1998).Google Scholar
  12. 12.
    E. W. Lytvynov, “A note on test and generalized functionals of Poisson white noise,” Hiroshima Math. J., 28, No.3, 463–480 (1998).MathSciNetGoogle Scholar
  13. 13.
    Yu. G. Kondratiev and E. W. Lytvynov, “Operators of Gamma white noise calculus,” Infinite Dim. Anal. Quantum Probab. Related Topics, 3, No.3, 303–335 (2000).Google Scholar
  14. 14.
    Yu. M. Berezans’kyi and Yu. G. Kondratiev, Spectral Methods in Infinite-Dimensional Analysis, Vols. 1, 2, Kluwer, Dordrecht (1995).Google Scholar
  15. 15.
    Yu. M. Berezans’kyi, “On images of operators of second quantization,” Dokl. Akad. Nauk Ukr., No. 11, 20–24 (1993).Google Scholar
  16. 16.
    D. L. Finkelshtein, Yu. G. Kondratiev, A. Yu. Konstantinov, and M. Rockner, “Symmetric differential operators of the second order in Poisson spaces,” Meth. Funct. Anal. Top., 7, No.4, 489–509 (2001).Google Scholar
  17. 17.
    Yu. M. Berezans’kyi, Z. G. Sheftel, and G. F. Us, Functional Analysis, Vols. 1, 2, Birkhauser, Basel (1996).Google Scholar
  18. 18.
    Yu. G. Kondratiev, J. L. da Silva, and L. Streit, “Generalized Appell systems,” Meth. Funct. Anal. Top., 3, No.3, 28–61 (1997).Google Scholar
  19. 19.
    Yu. G. Kondratiev, L. Streit, W. Westerkamp, and J. Yan, “Generalized functions on infinite dimensional analysis,” Hiroshima Math. J., 28, No.2, 213–260 (1998).Google Scholar
  20. 20.
    A. V. Skorokhod, Integration in a Hilbert Space [in Russian], Nauka, Moscow (1975).Google Scholar
  21. 21.
    V. A. Tesko, “Spaces Appearing in the Construction of Infinite-Dimensional Analysis According to the Biorthogonal Scheme,” Ukr. Mat. Zh., 56, No.7, 977–990 (2004).Google Scholar
  22. 22.
    Yu. M. Berezans’kyi and A. A. Kalyuzhnyi, Harmonic Analysis in Hypercomplex Systems, Kluwer, Dordrecht (1998).Google Scholar
  23. 23.
    Yu. M. Berezans’kyi and Yu. G. Kondratiev, “Biorthogonal systems in hypergroups: an extension of non-Gaussian analysis,” Meth. Funct. Anal. Top., 2, No.2, 1–50 (1996).Google Scholar
  24. 24.
    V. G. Maz’ya and T. O. Shaposhnikova, Multiplicators in Spaces of Differentiable Functions [in Russian], Leningrad University, Leningrad (1986).Google Scholar
  25. 25.
    Yu. M. Berezans’kyi, “Poisson measure as the spectral measure of Jacobi field,” Infinite Dim. Anal. Quantum Probab. Related Topics, 3, No.1, 121–139 (2000).CrossRefGoogle Scholar
  26. 26.
    A. Lenard, “Correlation functions and the uniqueness of the state in classical statistical mechanics, ” Commun. Math. Phys., No. 30, 35–40 (1973).Google Scholar
  27. 27.
    Yu. G. Kondratiev and T. Kuna, “Harmonic analysis on configuration space I. General theory,” Infinite Dim. Anal. Quantum Probab. Related Topics, 5, No.2, 201–233 (2002).CrossRefGoogle Scholar
  28. 28.
    J. Mecke, “Stationare zufallige Ma×e auf lokalkompakten Abelshen Gruppen,” Z. Wahrscheinlichkeitstheor. Verw. Geb., No. 9, 36–58 (1967).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Yu. M. Berezans’kyi
    • 1
  • V. A. Tesko
    • 1
  1. 1.Institute of MathematicsUkrainian National Academy of SciencesKyivUkraine

Personalised recommendations