Advertisement

Ukrainian Mathematical Journal

, Volume 56, Issue 7, pp 1102–1116 | Cite as

Invariant points of a dynamical system of conflict in the space of piecewise-uniformly distributed measures

  • V. D. Koshmanenko
  • N. V. Kharchenko
Article

Abstract

We prove a theorem on the existence and structure of invariant points of a dynamical system of conflict in the space of piecewise-uniformly distributed measures.

Keywords

Dynamical System Invariant Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Koshmanenko, V. D. 2003Theorem on conflict for a pair of stochastic vectorsUkr. Mat. Zh.55555560Google Scholar
  2. 2.
    Koshmanenko, V. D. 2004The theorem on conflict for probability measuresMath. Math. Oper. Res.59303313Google Scholar
  3. 3.
    J. M. Epstein, Nonlinear Dynamics, Mathematical Biology, and Social Science, Addison-Wesley (1997).Google Scholar
  4. 4.
    Hofbauer, J., Sigmund, K. 1988The Theory of Evolution and Dynamical SystemsCambridge UniversityCambridgeGoogle Scholar
  5. 5.
    Hofbauer, J., Sigmund, K. 1988Evolutionary Games and Population DynamicsCambridge UniversityCambridgeGoogle Scholar
  6. 6.
    K. Sigmund, “The population dynamics of conflict and cooperation,” Doc. Math. J. DMV, I, 487–506 (1998).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2004

Authors and Affiliations

  • V. D. Koshmanenko
    • 1
  • N. V. Kharchenko
    • 1
  1. 1.Institute of MathematicsUkrainian Academy of SciencesKiev

Personalised recommendations