Advertisement

Ukrainian Mathematical Journal

, Volume 56, Issue 4, pp 560–576 | Cite as

Stability of positive and monotone systems in a partially ordered space

  • A. G. Mazko
Article

Abstract

We investigate properties of positive and monotone dynamical systems with respect to given cones in the phase space. Stability conditions for linear and nonlinear differential systems in a partially ordered space are formulated. Conditions for the positivity of dynamical systems with respect to the Minkowski cone are established. By using the comparison method, we solve the problem of the robust stability of a family of systems.

Keywords

Dynamical System Phase Space Stability Condition Comparison Method Differential System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Krasnosel’skii, M. A., Lifshits, E. A., Sobolev, A. V. 1985Positive Linear SystemsNaukaMoscow[in Russian]Google Scholar
  2. 2.
    Clément, P., Heijmans, H. J. A. M., Angenent, S., Duijn, C. J., Pagter, B. 1987One-Parameter SemigroupsNorth-HollandAmsterdamGoogle Scholar
  3. 3.
    G. N. Mil’shtein, “Exponential stability of positive semigroups in a linear topological space,” Izv. Vyssh. Uchebn. Zaved., Ser. Mat., No. 9, 35–42 (1975).Google Scholar
  4. 4.
    Martynyuk, A. A., Obolenskii, A. Yu. 1980On stability of solutions of Wazewski autonomous systemsDifferents. Uravn.1613921407Google Scholar
  5. 5.
    Mazko, A. G. 2001Stability of linear positive systemsUkr. Mat. Zh.53323330Google Scholar
  6. 6.
    Mazko, A. G. 1999Localization of Spectrum and Stability of Dynamical SystemsInstitute of Mathematics, Ukrainian Academy of SciencesKiev[in Russian]Google Scholar
  7. 7.
    Mazko, A. G. 2002Stability and comparison of systems in a partially ordered spaceProbl. Nelin. Anal. Inzh. Sist.82448Google Scholar
  8. 8.
    Mazko, A. G. 2002Stability of dynamical systems in spaces with conesProblems of Mechanics and Its ApplicationsInstitute of Mathematics, Ukrainian Academy of SciencesKiev[in Russian]Google Scholar
  9. 9.
    Mazko, A. G. 2003Positive and monotone systems in a partially ordered spaceUkr. Mat. Zh.55164173Google Scholar
  10. 10.
    Krasnosel’skii, M. A. 1966The Operator of Translation along Trajectories of Differential EquationsNaukaMoscow[in Russian]Google Scholar
  11. 11.
    Glazman, I. M., Lyubich, Yu. I. 1969Finite-Dimensional Linear AnalysisNaukaMoscow[in Russian]Google Scholar
  12. 12.
    Matrosov, V. M., Anapol’skii, L. Yu., Vasil’ev, S. N. 1980Comparison Method in Mathematical Theory of SystemsNaukaNovosibirsk[in Russian]Google Scholar
  13. 13.
    Lakshmikantham, V., Leela, S., Martynyuk, A. A. 1991Stability of Motion: Comparison MethodNaukova DumkaKiev[in Russian]Google Scholar
  14. 14.
    Siljak, D. D. 1978Large-Scale Dynamic Systems: Stability and StructureNorth-HollandNew YorkGoogle Scholar
  15. 15.
    Martynyuk, A. A. 2002Qualitative Methods in Nonlinear Dynamics: Novel Approaches to Liapunov Matrix FunctionsMarcel DekkerNew YorkGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2004

Authors and Affiliations

  • A. G. Mazko
    • 1
  1. 1.Institute of MathematicsUkrainian Academy of SciencesKiev

Personalised recommendations