Advertisement

Ukrainian Mathematical Journal

, Volume 56, Issue 8, pp 1331–1342 | Cite as

Criterion for the uniqueness of a solution of the Darboux-Protter problem for multidimensional Hyperbolic equations with Chaplygin operator

  • S. A. Aldashev
Brief Communications
  • 16 Downloads

Abstract

We obtain a criterion for the uniqueness of a regular solution of the Darboux-Protter problem for multidimensional hyperbolic equations with Chaplygin operator. We also prove a theorem on the uniqueness of solutions of the dual problem.

Keywords

Dual Problem Regular Solution Hyperbolic Equation Multidimensional Hyperbolic Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    A. V. Bitsadze, Some Classes of Partial Differential Equations [in Russian], Nauka, Moscow (1981).Google Scholar
  2. 2.
    A. M. Nakhushev, Equations of Mathematical Biology [in Russian], Vysshaya Shkola, Moscow (1995).Google Scholar
  3. 3.
    M. N. Protter, “New boundary value problems for the wave equations and equations of mixed type,” J. Ration. Mech. Anal., 3, No.4, 435–446 (1954).Google Scholar
  4. 4.
    S. A. Aldashev, Boundary-Value Problems for Multidimensional Hyperbolic and Mixed Equations [in Russian], Gylym, Alma-Ata (1994).Google Scholar
  5. 5.
    S. A. Aldashev and N. Kh. Kim, “Mathematical model of the process of industrial blasting in axisymmetric case,” Dokl. Nats. Akad. Nauk RK, No. 2, 5–7 (2001).Google Scholar
  6. 6.
    S. A. Aldashev and B. Zh. Atabai, “Mathematical simulation of the process of rock blasting,” in: Proceedings of the International Conference “Contemporary Problems of Mechanics” [in Russian], Part 2, Kazakh University, Alma-Ata (2001), pp. 25–27.Google Scholar
  7. 7.
    S. A. Aldashev, “On Darboux problems for one class of multidimensional hyperbolic equations,” Differents. Uravn., 34, No.1, 1–5 (1998).Google Scholar
  8. 8.
    Sh. T. Nurzhanov, Darboux-Protter Problems for Degenerate Multidimensional Hyperbolic Equations [in Russian], Candidate-Degree Thesis (Physics and Mathematics), Alma-Ata (2000).Google Scholar
  9. 9.
    S. A. Aldashev, “On uniqueness criteria for the Darboux-Protter problem for one class of multidimensional hyperbolic equations,” Mat. Zh. (Almaaty), 2, No.4, 5–8 (2002).Google Scholar
  10. 10.
    S. A. Aldashev, “Criterion of uniqueness for a solution of the Darboux-Protter problem for degenerate multidimensional hyperbolic equations,” Dokl. Nats. Akad. Nauk RK, No. 3, 5–7 (2002).Google Scholar
  11. 11.
    S. G. Mikhlin, Multidimensional Singular Integrals and Integral Equations [in Russian], Fizmatgiz, Moscow (1962).Google Scholar
  12. 12.
    S. A. Tersenov, Introduction to the Theory of Equations Degenerating on the Boundary [in Russian], Novosibirsk University, Novosibirsk (1973).Google Scholar
  13. 13.
    A. V. Bitsadze, Mixed-Type Equations [in Russian], Academy of Sciences of the USSR, Moscow (1959).Google Scholar
  14. 14.
    V. I. Smirnov, A Course of Higher Mathematics [in Russian], Vol. 4, Part 2, Nauka, Moscow (1981).Google Scholar
  15. 15.
    A. N. Kolmogorov and S. V. Fomin, Elements of the Theory of Functions and Functional Analysis [in Russian], Nauka, Moscow (1976).Google Scholar
  16. 16.
    S. A. Aldashev, “Criterion for the uniqueness of a solution of the Darboux-Protter problem for multidimensional hyperbolic equations with Chaplygin operator,” Dokl. Nats. Akad. Nauk RK, No. 6, 50–52 (2002).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2004

Authors and Affiliations

  • S. A. Aldashev
    • 1
  1. 1.Kazakhstan Academy of Transport and CommunicationsAlma-AtaKazakhstan

Personalised recommendations