Skip to main content
Log in

Ant-plant networks exhibit distinct species diversity but similar organization in urban and wild areas of neotropical savannas

  • Published:
Urban Ecosystems Aims and scope Submit manuscript

Abstract

Interactions between ants and plants can form complex ecological networks, which may have their structure affected by human-induced habitat modification, such as urbanization. In this study, we investigated if the species diversity and the network topology of ant-plant co-occurrence networks (facultative associations between plants and ants) differs between remnants of Neotropical savannas. We sampled 12 savanna fragments (cerrado sensu stricto) in wild, rural and urban areas of Minas Gerais, Brazil. In total, the 12 ant-plant interaction networks were composed by 65 ant species, 83 plant species and 432 distinct interactions. We observed that in addition to variations in species composition, wild areas exhibited higher richness and abundance of ants compared to urban areas. However, our results show no variation in the specialization, modularity, and nestedness of ant-plant co-occurrence networks among urban, rural, and wild areas. Despite changes in species diversity, ant-plant interactions maintain consistent organization across studied environments, showcasing resilience to anthropogenic disturbances similar to that observed in wild remanants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data is provided within the manuscript or supplementary information files.

References

  • Achury R, Clement L, Ebeling A, Meyer S, Voigt W, Weisser WW (2022) Plant diversity and functional identity alter ant occurrence and activity in experimental grasslands. Ecosphere 13:e4252

    Article  Google Scholar 

  • Almeida-Neto M, Guimaraes P, Guimaraes PR, Loyola RD, Ulrich W (2008) A consistent metric for nestedness analysis in ecological systems: reconciling concept and measurement. Oikos 117:1227–1239

    Article  Google Scholar 

  • Alvares CA, Stape JL, Sentelhas PC, Gonçalves JLM, Sparovek G (2014) Koppen’s climate classification map for Brazil. Meteorol Z 22:711–728

    Article  Google Scholar 

  • Andersen AN (2019) Responses of ant communities to disturbance: five principles for understanding the disturbance dynamics of a globally dominant faunal group. J Anim Ecol 88:350–362

    Article  PubMed  Google Scholar 

  • Apolinário LCMH, Almeida ÂAD, Queiroz JM, Vargas AB, Almeida FS (2019) Diversity and guilds of ants in different land-use systems in Rio De Janeiro State. Brazil Floran 26:e20171152

    Google Scholar 

  • Araújo WS, Costa KCS, Freitas ÉVD, Santos JC, Cuevas-Reyes P (2024) Species richness and network topology patterns in neotropical plant-galling communities changes along an urbanization gradient. J Insect Conserv 28:191–200

    Article  Google Scholar 

  • Baccaro FB, Feitosa RM, Fernández F, Fernandes IO, Izzo TJ, Souza JLP, Solar RRC (2015) Guia para os gêneros de formigas do Brasil. INPA, Manaus

    Google Scholar 

  • Bascompte J, Jordano P, Olesen JM (2006) Asymmetric coevolutionary networks facilitate biodiversity maintenance. Science 312:431–433

    Article  CAS  PubMed  Google Scholar 

  • Bates D, Machler M, Bolker B, Walker S (2015) Fitting Linear mixed-effects models using lme4. J Stat Softw 67:1–48

    Article  Google Scholar 

  • Beckett SJ (2016) Improved community detection in weighted bipartite networks. R Soc Open Sci 3:140536

    Article  PubMed  PubMed Central  Google Scholar 

  • Blüthgen, N., Menzel, F., & Blüthgen, N. (2006). Measuring specialization in species interaction networks. BMC ecology, 6, 1-12

  • Cockle KL, Martin K (2015) Temporal dynamics of a commensal network of cavity-nesting vertebrates: increased diversity during an insect outbreak. Ecology 96:1093–1104

    Article  PubMed  Google Scholar 

  • Corro EJ, Ahuatzin DA, Jaimes AA, Favila ME, Ribeiro MC, López-Acosta JC, Dáttilo W (2019) Forest cover and landscape heterogeneity shape ant–plant co-occurrence networks in human-dominated tropical rainforests. Landsc Ecol 34:93–104

    Article  Google Scholar 

  • Costa CB, Ribeiro SP, Castro PT (2010) Ants as bioindicators of natural sucession in savanna and riparian vegetation impacted by dredging in the Jequitinhonha River Basin, Brazil. Restor Ecol 18:148–157

    Article  Google Scholar 

  • Dáttilo W (2012) Different tolerances of symbiotic and nonsymbiotic ant-plant networks to species extinctions. Netw Biol 2:127

    Google Scholar 

  • Dáttilo W, Vasconcelos HL (2019) Macroecological patterns and correlates of ant–tree interaction networks in neotropical savannas. Glob Ecol Biogeogr 28:1283–1294

    Article  Google Scholar 

  • Dáttilo W, Guimarães PR Jr, Izzo TJ (2013) Spatial structure of ant–plant mutualistic networks. Oikos 122:1643–1648

    Article  Google Scholar 

  • Dáttilo W, Marquitti FM, Guimarães PR Jr, Izzo TJ (2014a) The structure of ant–plant ecological networks: is abundance enough? Ecology 95:475–485

    Article  PubMed  Google Scholar 

  • Dáttilo W, Díaz-Castelazo C, Rico-Gray V (2014b) Ant dominance hierarchy determines the nested pattern in ant–plant networks. Biol J Linn Soc 113:405–414

    Article  Google Scholar 

  • Dáttilo W, Sánchez-Galván I, Lange D, Del-Claro K, Rico-Gray V (2014c) Importance of interaction frequency in analysis of ant-plant networks in tropical environments. J Trop Ecol 30:165–168

    Article  Google Scholar 

  • Dáttilo W, Ahuatzin-Flores DA, Corro-Mendez EJ, Escobar F, MacGregor-Fors I (2017) Redes complexas no estudo das interações ecológicas entre formigas e plantas em ambientes urbanos: um novo modelo conceitual. In: Bueno OC, Campos AEC, Morini MSC (eds) Formigas em Ambientes Urbanos do Brasil. Canal 6 Editora, Bauru, pp 265–284

    Google Scholar 

  • Del-Claro K, Dirzo R (2021) Impacts of Anthropocene defaunation on plant-animal interactions. In: Del-Claro K, Torezan-Silingardi HM (eds) Plant-animal interactions: source of Biodiversity. Springer, Cham, pp 333–345

    Chapter  Google Scholar 

  • Del-Claro K, Lange D, Torezan-Silingardi HM, Anjos DV, Calixto ES, Dáttilo W, Rico-Gray V (2018) The Complex ant–plant relationship within Tropical Ecological Networks. In: Dáttilo W, Rico-Gray V (eds) Ecological networks in the tropics: an integrative overview of species interactions from some of the most species-Rich habitats on Earth. Springer, Cham, pp 59–71

    Chapter  Google Scholar 

  • Dormann CF, Gruber B, Frund J (2008) Introducing the bipartite package: analysing ecological networks. R News 8:8–11

    Google Scholar 

  • Dormann CF, Frund J, Schaefer HM (2017) Identifying causes of patterns in ecological networks: opportunities and limitations. Annu Rev Ecol Evol Syst 48:559–584

    Article  Google Scholar 

  • Dröse W, Podgaiski LR, Dias CF, Mendonca MS Jr (2019) Local and regional drivers of ant communities in forest-grassland ecotones in South Brazil: a taxonomic and phylogenetic approach. PLoS ONE 14:e0215310

    Article  PubMed  PubMed Central  Google Scholar 

  • Fagundes R, Lange D, Anjos DV, Lima FP, Nahas L, Corro E, Silva PBG, Del-Claro K, Ribeiro SP, Dáttilo W (2018) Limited effects of fire disturbances on the species diversity and structure of ant-plant interaction networks in Brazilian Cerrado. Acta Oecol 93:65–73

    Article  CAS  Google Scholar 

  • Falcão JC, Dáttilo W, Díaz-Castelazo C, Rico-Gray V (2017) Assessing the impacts of tramp and invasive species on the structure and dynamic of ant-plant interaction networks. Biol Conserv 209:517–523

    Article  Google Scholar 

  • Fortuna MA, Bascompte J (2006) Habitat loss and the structure of plant–animal mutualistic networks. Ecol Let 9:278–283

    Article  Google Scholar 

  • Freitas ÉVD, Veloso MM, Araújo WS (2020) Urbanization alters the composition, but not the diversity and structure, of neotropical savanna woody plant communities. Folia Geobot 55:95–108

    Article  Google Scholar 

  • Freitas ÉVD, Maracahipes L, Araújo WS (2023) Plant richness and vegetation structure drive the topology of plant-herbivore networks in neotropical savannas. Acta Oecol 121:103961

    Article  Google Scholar 

  • Geslin B, Gauzens B, Thébault E, Dajoz I (2013) Plant Pollinator networks along a gradient of urbanisation. PLoS ONE 8:e63421

    Article  PubMed  PubMed Central  Google Scholar 

  • Gómez JM, Zamora R, Hódar JA, García D (1996) Experimental study of pollination by ants in Mediterranean high mountain and arid habitats. Oecologia 105:236–242

    Article  PubMed  Google Scholar 

  • Grimm NB, Faeth SH, Golubiewski NE, Redman CL, Wu J, Bai X, Briggs JM (2008) Global change and the ecology of cities. Science 319:756–760

    Article  CAS  PubMed  Google Scholar 

  • Guimarães PR, Rico-Gray V, Dos-Reis SF, Thompson JN (2006) Asymmetries in specialization in ant–plant mutualistic networks. Proc R Soc Lond B 273:2041–2047

    Google Scholar 

  • Guimarães PR Jr, Rico-Gray V, Oliveira PS, Izzo TJ, Dos Reis SF, Thompson JN (2007) Interaction intimacy affects structure and coevolutionary dynamics in mutualistic networks. Curr Biol 17:1797–1803

    Article  PubMed  Google Scholar 

  • Hölldobler B, Wilson EO (1990) The ants. Harvard University Press, Cambridge

    Book  Google Scholar 

  • Juárez-Juárez B, Dáttilo W, Moreno CE (2023) Synthesis and perspectives on the study of ant-plant interaction networks: a global overview. Ecol Entomol 48:269–283

    Article  Google Scholar 

  • Junqueira LK, Diehl E, Diehl-Fleig E (2001) Formigas (Hymenoptera: Formicidae) visitantes de Ilex paraguariensis (Aquifoliaceae). Neotrop Entomol 30:161–164

    Article  Google Scholar 

  • Kuchenbecker J, Cuevas-Reyes P, Fagundes M (2022) Community structure of ants (Hymenoptera: Formicidae) in an open habitat: the importance of environmental heterogeneity and interspecific interactions. Rev Mex Biodivers 93:e933900

    Article  Google Scholar 

  • Lassau SA, Hochuli DF (2004) Effects of habitat complexity on ant assemblages. Ecography 27:157–164

    Article  Google Scholar 

  • Li Q, Hoffmann BD, Lu ZX, Chen YQ (2017) Ants show that the conservation potential of afforestation efforts in Chinese valley-type savanna is dependent upon the afforestation method. J Insect Conserv 21:621–631

    Article  Google Scholar 

  • Marques TG, Espírito-Santo MM, Neves FS, Schoereder JH (2017) Ant assemblage structure in a secondary tropical dry forest: the role of ecological succession and seasonality. Sociobiology 64:261–275

    Article  Google Scholar 

  • Martinez HDR (2015) Analysing interactions of fitted models. CRAN-R Project

  • Mazziotta A, Vizentin-Bugoni J, Tottrup AP, Bruun HH, Fritz O, Heilmann-Clausen J (2017) Interaction type and intimacy structure networks between forest-dwelling organisms and their host trees. Basic Appl Ecol 24:86–97

    Article  Google Scholar 

  • McKinney ML (2002) Urbanization, biodiversity, and conservation. Bioscience 52:883–890

    Article  Google Scholar 

  • McKinney ML (2006) Urbanization as a major cause of biotic homogenization. Biol Conserv 127:247–260

    Article  Google Scholar 

  • Miranda PN, Silva Ribeiro JEL, Luna P, Brasil I, Delabie JHC, Dáttilo W (2019) The dilemma of binary or weighted data in interaction networks. Ecol Complex 38:1–10

    Article  Google Scholar 

  • Miranda PN, Silva Ribeiro JEL, Corro EJ, Brasil I, Delabie JHC, Dáttilo W (2022) Structural Stability of ant-plant Mutualistic Networks mediated by Extrafloral nectaries: looking at the effects of Forest Fragmentation in the Brazilian Amazon. Sociobiology 69:e8261

    Article  Google Scholar 

  • Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D et al (2017) vegan: Community Ecology Package. R package version 2.4-4

  • Pellissier L, Albouy C, Bascompte J, Farwig N, Graham C, Loreau M, Gravel D (2018) Comparing species interaction networks along environmental gradients. Biol Rev 93:785–800

    Article  PubMed  Google Scholar 

  • Plowman NS, Hood AS, Moses J, Redmond C, Novotny V, Klimes P, Fayle TM (2017) Network reorganization and breakdown of an ant–plant protection mutualism with elevation. Proc R Soc B Biol Sci 284:20162564

    Article  Google Scholar 

  • Poisot T, Stouffer DB, Gravel D (2015) Beyond species: why ecological interaction networks vary through space and time. Oikos 124:243–251

    Article  Google Scholar 

  • QGIS Development Team (2020) QGIS 3.4 Geographic Information System user guide. Open Source Geospatial Foundation Project

  • R Development Core Team (2023) R: a language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Ribeiro JF, Walter BMT (2008) As principais fitofisionomias do bioma Cerrado. In: Sano SM, Almeida SP, Ribeiro JF (eds) Cerrado: ecologia e flora. Embrapa Cerrados, Brasília, pp 151–212

    Google Scholar 

  • Rico-Gray V, Oliveira PS (2007) The Ecology and Evolution of ant-plant interactions. The University of Chicago, Chicago

    Book  Google Scholar 

  • Rocha EA, Fellowes MDE (2020) Urbanisation alters ecological interactions: ant mutualists increase and specialist insect predators decrease on an urban gradient. Sci Rep 10:6406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sampaio RC, Silva LBF, Souza Coelho RC, Queiroz JM (2023) Effects of Vegetation structure on ant diversity in different Seasonal periods in impacted fragments of Atlantic Forest. Sociobiology 70:e7949

    Article  Google Scholar 

  • Sanchez A, Bellota E (2015) Protection against herbivory in the mutualism between Pseudomyrmex dendroicus (Formicidae) and Triplaris americana (Polygonaceae). J Hymenopt Res 46:71–83

    Article  Google Scholar 

  • Sánchez-Galván IR, Díaz-Castelazo C, Rico-Gray V (2012) Effect of hurricane Karl on a plant–ant network occurring in coastal Veracruz, Mexico. J Trop Ecol 28:603–609

    Article  Google Scholar 

  • Sanford MP, Manley PN, Murphy DD (2009) Effects of urban development on ant communities: implications for ecosystem services and management. Conserv Biol 23:131–141

    Article  PubMed  Google Scholar 

  • Santis AAA, Lomáscolo SB, Chacoff NP (2023) Effects of urbanization on the structure of plant-flower visitor network at the local and landscape levels in the northern Argentinian Yungas forest. Front Sustain Cities 5:1086076

    Article  Google Scholar 

  • Silvestre RC, Brandão RF, Silva RR (2003) Grupos funcionales de hormigas: El Caso De Los Gremios Del Cerrado. In: Fernández F (ed) Introducción a las hormigas de la región neotropical. Instituto de Investigación de Recursos Biológicos Alexander Von Humboldt, Bogotá, pp 101–136

    Google Scholar 

  • Tylianakis JM, Morris RJ (2017) Ecological networks across environmental gradients. Annu Rev Ecol Evol Syst 48:25–48

    Article  Google Scholar 

  • Tylianakis JM, Laliberté E, Nielsen A, Bascompte J (2010) Conservation of species interaction networks. Biol Conserv 143:2270–2279

    Article  Google Scholar 

  • Walker JS, Grimm NB, Briggs JM, Gries C, Dugan L (2009) Effects of urbanization on plant species diversity in central Arizona. Front Ecol Environm 7:465–470

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank to Odirlei Simões and Santos D’Angelo (in memoriam) for their help in plant identification; Flávio Camarota for help in ant identification; the colleagues of the Laboratory of Ecological Interactions and Biodiversity - LIEB for their help in field collections, and the Instituto Estadual de Florestas – IEF team for the collection permit and support in field activities, and the financing agencies FAPEMIG, FAPESP, CAPES, and CNPq for financial support.

Funding

This research was funded by FAPEMIG (APQ-00394-18; APQ-03236-22) and CNPq (423915/2018-5; 308928/2022-9). Sampling in the Veredas do Peruaçu State Park was financed by PELD-VERE, a project supported by CNPq/CAPES/FAPEMIG-Brazil (CNPq 441440/2016-9; CAPES 88887.136273/2017–00; FAPEMIG APQ-04816-17).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation and data collection were performed by Samira Rosa de Oliveira Lima, Edvânia Costa de Oliveira Sá and Poliane Neres Morais. Data analysis was performed by Samira Rosa de Oliveira Lima and Walter Santos de Araújo. The first draft of the manuscript was written by Samira Rosa de Oliveira Lima and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Walter Santos de Araújo.

Ethics declarations

Competing Interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Oliveira Lima, S.R., de Oliveira Sá, E.C., Morais, P.N. et al. Ant-plant networks exhibit distinct species diversity but similar organization in urban and wild areas of neotropical savannas. Urban Ecosyst (2024). https://doi.org/10.1007/s11252-024-01556-8

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11252-024-01556-8

Keywords

Navigation