Skip to main content

Advertisement

Log in

Native plant gardens support more microbial diversity and higher relative abundance of potentially beneficial taxa compared to adjacent turf grass lawns

  • Published:
Urban Ecosystems Aims and scope Submit manuscript

Abstract

With increased population growth and suburban sprawl, anthropogenic landscapes such as urban ecosystems are becoming increasingly abundant, with changes in land cover contributing to loss of biodiversity and ecosystem functions. As such, it is important to understand how land cover choices impact ecosystem services and functions within urban ecosystems. Turf grass lawns are the default landscape in North America, but recent efforts have focused on replacing lawns with native plant communities. Native plant communities within urban ecosystems increase abundance and diversity of insects and insectivorous birds, but less is known about how native gardens could impact underlying soil bacterial communities. In this study, we identified 13 sites in the Omaha/Lincoln, Nebraska, USA area with native plant gardens that were converted from turf grass. We collected soil samples in October, 2020 (n = 18 native garden soil samples and n = 13 turf grass samples) and isolated DNA for high throughput sequencing. We compared the bacterial community structure, bacterial diversity, and individual bacterial taxa between native plant gardens and adjacent turf grass. We found several potentially beneficial bacterial taxa to be more abundant in native garden soil than in adjacent turf. The genera Gemmatimonas, Kofleria, and Acidobacteria belonging to Subdivision3 genera incertae sedis, were significantly more abundant in native garden soils, while Solirubrobacter was significantly more abundant in turf grass soils. Kofleria has been suggested as a keystone taxon for rich organic soils, while greater abundance of Gemmatimonas in native garden soils indicates a high level of soil carbon and phosphorous sequestration and functions as a potential sink for the greenhouse gas nitrous oxide. Native gardens also supported significantly more bacterial biodiversity than adjacent turf. These findings suggest that conversion of turf grass to native gardens could improve ecosystem services associated with soil bacterial diversity such as increased carbon sequestration, phosphate dissolution, and soil reduction of nitrous oxide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and material

The raw sequencing data files have been uploaded to NCBI Genbank under BioProject number PRJNA839060 and csv files will be made available upon request.

Code availability

All R script will be made available upon request for reproducibility of findings.

References

  • Acosta-Martínez V, Dowd S, Sun Y, Allen V (2008) Tag-encoded pyrosequencing analysis of bacterial diversity in a single soil type as affected by management and land use. Soil Biol Biochem 40:2762–2770

    Article  Google Scholar 

  • Ananyeva ND, Ivashchenko KV, Sushko SV (2021) Microbial indicators of urban soils and their role in the assessment of ecosystem services: a review. Eurasian Soil Sci 54:1517–1531

    Article  Google Scholar 

  • Antwis RE, Griffiths SM, Harrison XA, Aranega-Bou P, Arce A, Bettridge AS, Brailsford FL, de Menezes A, Devaynes A, Forbes KM, Fry EL, Goodhead I, Haskell E, Heys C, James C, Johnston SR, Lewis GR, Lewis Z, Macey MC, McCarthy A, McDonald JE, Mejia-Florez NL, O’Brien D, Orland C, Pautasso M, Reid WDK, Robinson HA, Wilson K, Sutherland WJ (2017) Fifty important research questions in microbial ecology. FEMS Microbiol Ecol 93:5. https://doi.org/10.1093/femsec/fix044

  • Banerjee S, Kirkby CA, Schmutter D, Bissett A, Kirkegaard JA, Richardson AE (2016) Network analysis reveals functional redundancy and keystone taxa amongst bacterial and fungal communities during organic matter decomposition in an arable soil. Soil Biol Biochem 97:188–198

    Article  CAS  Google Scholar 

  • Barber NA, Chantos-Davidson KM, Amel Peralta R, Sherwood JP, Swingley WD (2017) Soil microbial community composition in tallgrass prairie restorations converge with remnants across a 27-year chronosequence. Environ Microbiol 19:3118–3131

    Article  CAS  PubMed  Google Scholar 

  • Bardgett RD, van der Putten WH (2014) Belowground biodiversity and ecosystem functioning. Nature 515:505–511

    Article  CAS  PubMed  Google Scholar 

  • Baruch Z, Liddicoat C, Cando-Dumancela C, Laws M, Morelli H, Weinstein P, Young JM, Breed MF (2021) Increased plant species richness associates with greater soil bacterial diversity in urban green spaces. Environ Res 196:110425

    Article  CAS  PubMed  Google Scholar 

  • Berland A, Shiflett SA, Shuster WD, Garmestani AS, Goddard HC, Herrmann DL, Hopton ME (2017) The role of trees in urban stormwater management. Landsc Urban Plan 162:167–177

    Article  PubMed  PubMed Central  Google Scholar 

  • Bijoor NS, Czimczik CI, Pataki DE, Billings SA (2008) Effects of temperature and fertilization on nitrogen cycling and community composition of an urban lawn. Glob Change Biol 14:2119–2131

    Article  Google Scholar 

  • BONAP (2017) The Biota of North America Program. http://www.bonap.org/. Accessed 29 Oct 2020

  • Burghardt KT, Tallamy DW (2013) Plant origin asymmetrically impacts feeding guilds and life stages driving community structure of herbivorous arthropods. Divers Distrib 19:1553–1565

    Article  Google Scholar 

  • Burghardt KT, Tallamy DW (2015) Not all non-natives are equally unequal: reductions in herbivore β-diversity depend on phylogenetic similarity to native plant community. Ecol Lett 18:1087–1098

    Article  PubMed  Google Scholar 

  • Burghardt KT, Tallamy DW, Shriver WG (2009) Impact of native plants on bird and butterfly biodiversity in suburban landscapes. Conserv Biol 23:219–224

    Article  PubMed  Google Scholar 

  • Byrne LB (2007) Habitat structure: A fundamental concept and framework for urban soil ecology. Urban Ecosystems 10:255–274

    Article  Google Scholar 

  • Byrne LB (2021) Chapter 14 - Socioecological soil restoration in urban cultural landscapes. In: Stanturf JA, Callaham MA (ed). Soils and Landscape Restoration, 373–410. Academic Press. https://doi.org/10.1016/B978-0-12-813193-0.00014-X

  • Byrne LB, Grewal P (2008) Introduction to ecological landscaping: a holistic description and framework to guide the study and management of urban landscape parcels. Citiesand the Environment(CATE): Vol. 1: Iss. 2, Article 3. Available at: https://digitalcommons.lmu.edu/cate/vol1/iss2/3

  • Caravaca F, Lozano Z, Rodríguez-Caballero G, Roldán A (2017) Spatial shifts in soil microbial activity and degradation of pasture cover caused by prolonged exposure to cement dust. Land Degrad Dev 28:1329–1335

    Article  Google Scholar 

  • Cary SC, McDonald IR, Barrett JE, Cowan DA (2010) On the rocks: the microbiology of Antarctic Dry Valley soils. Nat Rev Microbiol 8:129–138

    Article  CAS  PubMed  Google Scholar 

  • Clarholm M (1985) Interactions of bacteria, protozoa and plants leading to mineralization of soil nitrogen. Soil Biol Biochem 17:181–187

    Article  CAS  Google Scholar 

  • Cole JR, Wang Q, Fish JA, Chai B, McGarrell DM, Sun Y, Brown CT, Porras-Alfaro A, Kuske CR, Tiedje JM (2014) Ribosomal database project: data and tools for high throughput rRNA analysis. Nucleic Acids Res 42:D633-642

    Article  CAS  PubMed  Google Scholar 

  • Coux C, Donoso I, Tylianakis JM, García D, Martínez D, Dehling DM, Stouffer DB (2021) Tricky partners: native plants show stronger interaction preferences than their exotic counterparts. Ecology 102:e03239

    Article  PubMed  Google Scholar 

  • Delgado-Baquerizo M, Eldridge DJ, Liu Y-R, Sokoya B, Wang J-T, Hu H-W, He J-Z, Bastida F, Moreno JL, Bamigboye AR, Blanco-Pastor JL, Cano-Díaz C, Illán JG, Makhalanyane TP, Siebe C, Trivedi P, Zaady E, Verma JP, Wang L, Wang J, Grebenc T, Peñaloza-Bojacá GF, Nahberger TU, Teixido AL, Zhou X-Q, Berdugo M, Duran J, Rodríguez A, Zhou X, Alfaro F, Abades S, Plaza C, Rey A, Singh BK, Tedersoo L, Fierer N (2021) Global homogenization of the structure and function in the soil microbiome of urban greenspaces. Science Advances 7:eabg5809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Denevan WM (1992) The Pristine Myth: The Landscape of the Americas in 1492. Ann Assoc Am Geogr 82:369–385

    Article  Google Scholar 

  • Deng J, Bai X, Zhou Y, Zhu W, Yin Y (2020) Variations of soil microbial communities accompanied by different vegetation restoration in an open-cut iron mining area. Sci Total Environ 704:135243

    Article  CAS  PubMed  Google Scholar 

  • Eisenhauer N, Buscot F, Heintz-Buschart A, Jurburg SD, Küsel K, Sikorski J, Vogel H-J, Guerra CA (2021) The multidimensionality of soil macroecology. Glob Ecol Biogeogr 30:4–10

    Article  PubMed  Google Scholar 

  • Fernández-González AJ, Wentzien NM, Villadas PJ, Valverde-Corredor A, Lasa AV, Gómez-Lama Cabanás C, Mercado-Blanco J, Fernández-López M (2020) Comparative study of neighboring Holm oak and olive trees-belowground microbial communities subjected to different soil management. PLoS ONE 15:e0236796

    Article  PubMed  PubMed Central  Google Scholar 

  • Fukase J (2016) Increased pollinator activity in urban gardens with more native flora. Appl Ecol Environ Res 14:297–310

    Article  Google Scholar 

  • Hall SJ, Huber D, Grimm NB (2008) Soil N2O and NO emissions from an arid, urban ecosystem. J Geophys Res: Biogeosci 113:G01016. https://doi.org/10.1029/2007JG000523

  • Hao J, Chai YN, Lopes LD, Ordóñez RA, Wright EE, Archontoulis S, Schachtman DP (2021) The Effects of Soil Depth on the Structure of Microbial Communities in Agricultural Soils in Iowa (United States). Appl Environ Microbiol 87:e02673-e2720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harrison T, Gibbs J, Winfree R (2019) Anthropogenic landscapes support fewer rare bee species. Landscape Ecol 34:967–978

    Article  Google Scholar 

  • Hautier Y, Tilman D, Isbell F, Seabloom EW, Borer ET, Reich PB (2015) Anthropogenic environmental changes affect ecosystem stability via biodiversity. Science 348:336–340

    Article  CAS  PubMed  Google Scholar 

  • Hooper DU, Chapin FS, Ewel JJ, Hector A, Inchausti P, Lavorel S, Lawton JH, Lodge DM, Loreau M, Naeem S, Schmid B, Setälä H, Symstad AJ, Vandermeer J, Wardle DA (2005) Effects of Biodiversity on Ecosystem Functioning: A Consensus of Current Knowledge. Ecol Monogr 75:3–35

    Article  Google Scholar 

  • Hui N, Jumpponen A, Francini G, Kotze J, Liu X, Romantschuk M, Strömmer R, Setälä H (2017) Soil microbial communities are shaped by vegetation type and park age in cities under cold climate: Park Soil Microbial Communities. Environ Microbiol 19:1281–1295

    Article  PubMed  Google Scholar 

  • Isbell F, Calcagno V, Hector A, Connolly J, Harpole WS, Reich PB, Scherer-Lorenzen M, Schmid B, Tilman D, van Ruijven J, Weigelt A, Wilsey BJ, Zavaleta ES, Loreau M (2011) High plant diversity is needed to maintain ecosystem services. Nature 477:199–202

    Article  CAS  PubMed  Google Scholar 

  • Johnston MR, Balster NJ, Zhu J (2016) Impact of residential prairie gardens on the physical properties of urban soil in madison, Wisconsin. J Environ Qual 45:45–52

    Article  CAS  PubMed  Google Scholar 

  • Joyner JL, Kerwin J, Deeb M, Lozefski G, Prithiviraj B, Paltseva A, McLaughlin J, Groffman P, Cheng Z, Muth TR (2019) Green infrastructure design influences communities of urban soil bacteria. Front Microbiol 10:982. https://doi.org/10.3389/fmicb.2019.00982

  • Kang M-S, Hur M, Park S-J (2019) Rhizocompartments and environmental factors affect microbial composition and variation in native plants. J Microbiol (Seoul, Korea) 57:550–561

    CAS  Google Scholar 

  • Kaye JP, Burke IC, Mosier AR, Guerschman JP (2004) Methane and nitrous oxide fluxes from urban soils to the atmosphere. Ecol Appl 14:975–981

    Article  Google Scholar 

  • Kielak AM, Barreto CC, Kowalchuk GA, van Veen JA and Kuramae EE (2016) The ecology of acidobacteria: moving beyond genes and genomes. Front Microbiol 7:744. https://doi.org/10.3389/fmicb.2016.00744

  • Kim J-S, Dungan RS, Crowley D (2008) Microarray analysis of bacterial diversity and distribution in aggregates from a desert agricultural soil. Biol Fertil Soils 44:1003

    Article  CAS  Google Scholar 

  • Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, Glöckner FO (2013) Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res 41:e1

    Article  CAS  PubMed  Google Scholar 

  • Lal R (2012) Urban Ecosystems and Climate Change. In: Lal R, Augustin B (eds) Carbon sequestration in urban ecosystems. Springer, Dordrecht, pp 3–19

    Chapter  Google Scholar 

  • Larson DL, Anderson PJ, Newton W (2001) Alien plant invasion in mixed-grass prairie: effects of vegetation type and anthropogenic disturbance. Ecol Appl 11:128–141

    Article  Google Scholar 

  • Lau JA, Lennon JT (2012) Rapid responses of soil microorganisms improve plant fitness in novel environments. Proc Natl Acad Sci 109:14058–14062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ling N, Wang T, Kuzyakov Y (2022) Rhizosphere bacteriome structure and functions. Nat Commun 13:836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Z, Liu J, Yu Z, Yao Q, Li Y, Liang A, Zhang W, Mi G, Jin J, Liu X, Wang G (2020) Long-term continuous cropping of soybean is comparable to crop rotation in mediating microbial abundance, diversity and community composition. Soil and Tillage Research 197:104503

    Article  Google Scholar 

  • Lu H, Wu Y, Liang P, Song Q, Zhang H, Wu J, Wu W, Liu X, Dong C (2020) Alkaline amendments improve the health of soils degraded by metal contamination and acidification: Crop performance and soil bacterial community responses. Chemosphere 257:127309

    Article  CAS  PubMed  Google Scholar 

  • Mackelprang R, Grube AM, Lamendella R, Jesus E da C, Copeland A, Liang C, Jackson RD, Rice CW, Kapucija S, Parsa B, Tringe SG, Tiedje JM, Jansson JK (2018) Microbial community structure and functional potential in cultivated and native tallgrass prairie soils of the Midwestern United States. Front Microbiol 9:1775. https://doi.org/10.3389/fmicb.2018.01775

  • Mendes LW, Tsai SM, Navarrete AA, de Hollander M, van Veen JA, Kuramae EE (2015) Soil-borne microbiome: linking diversity to function. Microb Ecol 70:255–265

    Article  CAS  PubMed  Google Scholar 

  • Middleton EL, Bever JD (2012) Inoculation with a native soil community advances succession in a grassland restoration. Restor Ecol 20:218–226

    Article  Google Scholar 

  • Milesi C, Running SW, Elvidge CD, Dietz JB, Tuttle BT, Nemani RR (2005) Mapping and modeling the biogeochemical cycling of turf grasses in the United States. Environ Manage 36:426–438

    Article  PubMed  Google Scholar 

  • Miller JR, Hobbs RJ (2002) Conservation where people live and work. Conserv Biol 16:330–337

    Article  Google Scholar 

  • Mills JG, Bissett A, Gellie NJC, Lowe AJ, Selway CA, Thomas T, Weinstein P, Weyrich LS, Breed MF (2020) Revegetation of urban green space rewilds soil microbiotas with implications for human health and urban design. Restor Ecol 28:S322–S334

    Article  Google Scholar 

  • Mills JG, Weinstein P, Gellie NJC, Weyrich LS, Lowe AJ, Breed MF (2017) Urban habitat restoration provides a human health benefit through microbiome rewilding: the Microbiome Rewilding Hypothesis. Restor Ecol 25:866–872

    Article  Google Scholar 

  • Montzka SA, Dlugokencky EJ, Butler JH (2011) Non-CO2 greenhouse gases and climate change. Nature 476:43–50

    Article  CAS  PubMed  Google Scholar 

  • Narango DL, Tallamy DW, Marra PP (2017) Native plants improve breeding and foraging habitat for an insectivorous bird. Biol Cons 213:42–50

    Article  Google Scholar 

  • Narango DL, Tallamy DW, Marra PP (2018) Nonnative plants reduce population growth of an insectivorous bird. Proc Natl Acad Sci 115:11549–11554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Narango DL, Tallamy DW, Shropshire KJ (2020) Few keystone plant genera support the majority of Lepidoptera species. Nat Commun 11:5751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neilson JW, Califf K, Cardona C, Copeland A, Van Treuren W, Josephson KL, Knight R, Gilbert JA, Quade J, Caporaso JG, Maier RM (2017) Significant impacts of increasing aridity on the arid soil microbiome. mSystems 2:e00195-16. https://doi.org/10.1128/mSystems.00195-16

  • Nowak DJ, Hirabayashi S, Bodine A, Hoehn R (2013) Modeled PM2.5 removal by trees in ten U.S. cities and associated health effects. Environ Pollut 178:395–402

    Article  CAS  PubMed  Google Scholar 

  • Nugent A, Allison SD (2022) A framework for soil microbial ecology in urban ecosystems. Ecosphere 13:e3968

    Article  Google Scholar 

  • Oksanen J (2020) Vegan: ecological diversity: 12. https://CRAN.R-project.org/package=vegan

  • Ooi QE, Nguyen CTT, Laloo A, Bandla A, Swarup S (2022) Urban soil microbiome functions and their linkages with ecosystem services. In: Rakshit A, Ghosh S, Vasenev V, Pathak H, Rajput VD (eds) Soils in Urban Ecosystem. Springer, Singapore, pp 47–63

    Chapter  Google Scholar 

  • O’Riordan R, Davies J, Stevens C, Quinton JN, Boyko C (2021) The ecosystem services of urban soils: A review. Geoderma 395:115076

    Article  Google Scholar 

  • Oshiki M, Toyama Y, Suenaga T, Terada A, Kasahara Y, Yamaguchi T, Araki N (2022) N2O Reduction by Gemmatimonas aurantiaca and Potential Involvement of Gemmatimonadetes Bacteria in N2O Reduction in Agricultural Soils. Microbes Environ 37:ME21090. https://doi.org/10.1264/jsme2.ME21090

  • Park D, Kim H, Yoon S (2017) Nitrous oxide reduction by an obligate aerobic bacterium, gemmatimonas aurantiaca strain T-27. Appl Environ Microbiol 83:e00502-e517

    Article  PubMed  PubMed Central  Google Scholar 

  • Pataki DE, Alig RJ, Fung AS, Golubiewski NE, Kennedy CA, Mcpherson EG, Nowak DJ, Pouyat RV, Romero Lankao P (2006) Urban ecosystems and the North American carbon cycle: urban ecosystems and the North American carbon cycle. Glob Change Biol 12:2092–2102

    Article  Google Scholar 

  • Pereira HM, Leadley PW, Proença V, Alkemade R, Scharlemann JPW, Fernandez-Manjarrés JF, Araújo MB, Balvanera P, Biggs R, Cheung WWL, Chini L, Cooper HD, Gilman EL, Guénette S, Hurtt GC, Huntington HP, Mace GM, Oberdorff T, Revenga C, Rodrigues P, Scholes RJ, Sumaila UR, Walpole M (2010) Scenarios for Global Biodiversity in the 21st Century. Science 330:1496–1501

    Article  CAS  PubMed  Google Scholar 

  • Petters S, Groß V, Söllinger A, Pichler M, Reinhard A, Bengtsson MM, Urich T (2021) The soil microbial food web revisited: Predatory myxobacteria as keystone taxa? ISME J 15:2665–2675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Radwan TM, Blackburn GA, Whyatt JD, Atkinson PM (2021) Global land cover trajectories and transitions. Sci Rep 11:12814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ravishankara AR, Daniel JS, Portmann RW (2009) Nitrous Oxide (N2O): The dominant ozone-depleting substance emitted in the 21st century. Science 326:123–125

    Article  CAS  PubMed  Google Scholar 

  • Sánchez-Marañón M, Miralles I, Aguirre-Garrido JF, Anguita-Maeso M, Millán V, Ortega R, García-Salcedo JA, Martínez-Abarca F, Soriano M (2017) Changes in the soil bacterial community along a pedogenic gradient. Sci Rep 7:14593

    Article  PubMed  PubMed Central  Google Scholar 

  • Schloter M, Nannipieri P, Sørensen SJ, van Elsas JD (2018) Microbial indicators for soil quality. Biol Fertil Soils 54:1–10

    Article  CAS  Google Scholar 

  • Seipel T, Kueffer C, Rew LJ, Daehler CC, Pauchard A, Naylor BJ, Alexander JM, Edwards PJ, Parks CG, Arevalo JR, Cavieres LA, Dietz H, Jakobs G, McDougall K, Otto R, Walsh N (2012) Processes at multiple scales affect richness and similarity of non-native plant species in mountains around the world. Glob Ecol Biogeogr 21:236–246

    Article  Google Scholar 

  • Shah V, Zakrzewski M, Wibberg D, Eikmeyer F, Schlüter A, Madamwar D (2013) Taxonomic profiling and metagenome analysis of a microbial community from a habitat contaminated with industrial discharges. Microbial Ecol

  • Singleton DR, Furlong MA, Peacock AD, White DC, Coleman DC, Whitman WB (2003) Solirubrobacter pauli gen. nov., sp. nov., a mesophilic bacterium within the Rubrobacteridae related to common soil clones. Int J Syst Evol Microbiol 53:485–490

    Article  PubMed  Google Scholar 

  • Snyder SA, Miller JR, Skibbe AM, Haight RG (2007) Habitat acquisition strategies for grassland birds in an urbanizing landscape. Environ Manage 40:981–992

    Article  PubMed  Google Scholar 

  • Soil Survey Staff Natural Resources Conservation Service, United States Department of Agriculture (2022) September 27. Web Soil Survey. http://websoilsurvey.sc.egov.usda.gov/

  • Stackebrandt E (2004) Will we ever understand? The undescribable diversity of the prokaryotes. Acta Microbiol Immunol Hung 51:449–462

    Article  CAS  PubMed  Google Scholar 

  • Stephanou C, Omirou M, Philippot L, Zissimos AM, Christoforou IC, Trajanoski S, Oulas A, Ioannides IM (2021) Land use in urban areas impacts the composition of soil bacterial communities involved in nitrogen cycling. A case study from Lefkosia (Nicosia) Cyprus. Sci Reports 11:8198

    CAS  Google Scholar 

  • Szlavecz K, Yesilonis I, Pouyat R (2017) Soil as a foundation to urban biodiversity. Page Urban Biodiversity, Routledge

    Book  Google Scholar 

  • Thompson GL, Kao-Kniffin J (2016) Diversity Enhances NPP, N Retention, and Soil Microbial Diversity in Experimental Urban Grassland Assemblages. PLoS ONE 11:e0155986

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naïve bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol

  • Wang X, Li X, Ren X, Jackson MV, Fuller RA, Melville DS, Amano T, Ma Z (2021) Effects of anthropogenic landscapes on population maintenance of waterbirds. Conserv Biol 36:2. https://doi.org/10.1111/cobi.13808

  • White HJ, León-Sánchez L, Burton VJ, Cameron EK, Caruso T, Cunha L, Dirilgen T, Jurburg SD, Kelly R, Kumaresan D, Ochoa-Hueso R, Ordonez A, Phillips HRP, Prieto I, Schmidt O, Caplat P (2020) Methods and approaches to advance soil macroecology. Global Ecol Biogeogr 2020;00:1–17. https://doi.org/10.1111/geb.13156

  • Wickham H (2016) ggplot2. Springer International Publishing, Cham

    Book  Google Scholar 

  • Zeng Y, Nupur N, Wu A, Madsen M, Chen X, Gardiner AT, Koblížek M. (2021) Gemmatimonas groenlandica sp. nov. is an aerobic anoxygenic phototroph in the phylum gemmatimonadetes. Front Microbiol 11:606612. https://doi.org/10.3389/fmicb.2020.606612

  • Zeng Y, Selyanin V, Lukeš M, Dean J, Kaftan D, Feng F, Koblížek M (2015) Characterization of the microaerophilic, bacteriochlorophyll a-containing bacterium Gemmatimonas phototrophica sp. nov., and emended descriptions of the genus Gemmatimonas and Gemmatimonas aurantiaca | Microbiol Soc 65:2410–2419. https://doi.org/10.1099/ijs.0.000272

  • Zhalnina K, Dias R, Quadros P, Davis-Richardson A, Camargo F, Clark I, Mcgrath S, Hirsch P, Triplett E (2014) Soil pH determines microbial diversity and composition in the park grass experiment. Microb Ecol 69 (2):395–406. https://doi.org/10.1007/s00248-014-0530-2. Epub 2014 Nov 14. PMID: 25395291

  • Zhang H, Sekiguchi Y, Hanada S, Hugenholtz P, Kim H, Kamagata Y, Nakamura K (2003) Gemmatimonas aurantiaca gen. nov., sp. nov., a gram-negative, aerobic, polyphosphate-accumulating micro-organism, the first cultured representative of the new bacterial phylum Gemmatimonadetes phyl. nov. Int J Syst Evol Microbiol 53:1155–1163

    Article  CAS  PubMed  Google Scholar 

  • Ziter C, Turner MG (2018) Current and historical land use influence soil-based ecosystem services in an urban landscape. Ecol Appl 28:643–654

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors express gratitude to the property owners for allowing us to take soil samples and measurements. We also thank the reviewers and editor for the critical review that improved the quality of this manuscript.

Funding

This work was supported by the Wilson Enhancement Fund for Applied Research at Bellevue University.

Author information

Authors and Affiliations

Authors

Contributions

D.B., J.K., and T.M. conceived the concept of the study. T.M. collected soil samples. D.B., C.H., J.K., and T.M. processed samples and performed high throughput sequencing. J.K. and T.M. analyzed data. T.M. and J.K. wrote the manuscript. All authors reviewed and edited the manuscript.

Corresponding author

Correspondence to Tyler C. Moore.

Ethics declarations

Conflict of interest

The authors report no conflicts of interest.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 12 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baldi, D.S., Humphrey, C.E., Kyndt, J.A. et al. Native plant gardens support more microbial diversity and higher relative abundance of potentially beneficial taxa compared to adjacent turf grass lawns. Urban Ecosyst 26, 807–820 (2023). https://doi.org/10.1007/s11252-022-01325-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11252-022-01325-5

Keywords

Navigation