Skip to main content

Advertisement

Log in

Modeling the spatial distribution of multiple ecosystem services in Ilam dam watershed, Western Iran: identification of areas for spatial planning

  • Published:
Urban Ecosystems Aims and scope Submit manuscript

Abstract

The main purpose of current research is to quantify multiple Ecosystem Services (ESs) for the Ilam dam watershed, Western Iran. In this sense, the Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) was applied to quantify water yield, sediment retention, and habitat quality, and Recreation Opportunity Spectrum (ROS) to model recreation for the current landscape (here 2021). Due to the inevitable exchanges between different types of ESs, in this study, Getis-ord Gi ∗ statistics were also used to describe the characteristics of service bundles spatial variation. This tool is used to measure spatial clusters – i.e. hotspots and coldspot –within the grid, which helps prioritize conservation measures. The results show that changes in water yield are mainly influenced by changes in precipitation, sediment retention and other actions of multiple factors such as Land use/cover (LULC) type, precipitation and temperature, while changes in recreation and habitat quality have the most dominant influence by LULC type. Moreover, the results of the spatial ESs bundle indicate that the hotspots show high value for a wide variety of services, which are occupied by high forests and grassland proportions. Otherwise, the ESs coldspots bundle has shallow values for most of the services. The low percentage of current hotspots indicates the difficulty of obtaining multiple ESs from one area, suggesting a protective priority to stop the loss of various services. Given that the increasing demand for ESs has put a lot of pressure on natural ecosystems, politicians and urban decision makers need to focus on the sustainable use of ecosystems so that the supply of ESs is not disrupted. Hence, this research can be crucial as detailed instructions to raise politician’s awareness and design a policy on ESs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and material

The datasets used or analysed during the current study are available from the corresponding author on reasonable request.

References

  • Abera W, Tamene L, Abegaz A, Solomon D (2019) Understanding climate and land surface changes impact on water resources using Budyko framework and remote sensing data in Ethiopia. J Arid Environ 167:56–64

    Article  Google Scholar 

  • Adedeji OJ, Aladesanmi AD (2022) Air and non-air ecosystem services of urban trees in Ekiti State, South West Nigeria. Am J Environ Protect 11(2):19–27

    Article  CAS  Google Scholar 

  • Adem Esmail B, Geneletti D (2018) Multi-criteria decision analysis for nature conservation: a review of 20 years of applications. Methods Ecol Evol 9(1):42–53

    Article  Google Scholar 

  • Ávila-García D, Morató J, Pérez-Maussán AI, Santillán-Carvantes P, Alvarado J, Comín FA (2020) Impacts of alternative land-use policies on water ecosystem services in the Río Grande de Comitán-Lagos de Montebello watershed, Mexico. Ecosyst Serv 45:101179

    Article  Google Scholar 

  • Babbar D, Areendran G, Sahana M, Sarma K, Raj K, Sivadas A (2020) Assessment and prediction of Carbon Sequestration using Markov chain and InVEST model in Sariska Tiger Reserve, India. J Clean Prod 278:123333

    Article  Google Scholar 

  • Badamfirooz J, Mousazadeh R, Sarkheil H (2021) A proposed framework for economic valuation and assessment of damages cost to national wetlands ecosystem services using the benefit-transfer approach. Environ Challenges 5:100303

    Article  Google Scholar 

  • Bai Y, Chen Y, Alatalo JM, Yang Z, Jiang B (2020) Scale effects on the relationships between land characteristics and ecosystem services-a case study in Taihu Lake Basin, China. Sci Total Environ 716:137083

    Article  CAS  PubMed  Google Scholar 

  • Betru T, Tolera M, Sahle K, Kassa H (2019) Trends and drivers of land use/land cover change in Western Ethiopia. Appl Geogr 104:83–93

    Article  Google Scholar 

  • Boongaling K, Faustino-Eslava DV, Lansigan FP (2018) Modeling land use change impacts on hydrology and the use of landscape metrics as tools for watershed management: the case of an ungauged catchment in the Philippines. Land Use Pol 72:116–128

    Article  Google Scholar 

  • Budyko MI (1974) Climate and Life,  Academic, San Diego, Calif p 508

  • Chemura A, Rwasoka D, Mutanga O, Dube T, Mushore T (2020) The impact of land-use/land cover changes on water balance of the heterogeneous Buzi sub-catchment, Zimbabwe. Remote Sens Appl: Soc Environ 18:100292

    Google Scholar 

  • Daneshi A, Brouwer R, Najafinejad A, Panahi M, Zarandian A, Maghsood FF (2021) Modelling the impacts of climate and land use change on water security in a semi-arid forested watershed using InVEST. J Hydrol 593:125621

    Article  Google Scholar 

  • de Groot RS, Alkemade R, Braat L, Hein L, Willemen L (2010) Challenges in integrating the concept of ecosystem services and values in landscape planning, management and decision making. Ecol Complex 7:260–272

    Article  Google Scholar 

  • Deore SJ (2005) Prioritization of micro-watersheds of upper Bhama basin on the basis of soil erosion risk using remote sensing and GIS technology. Doctoral Dissertation, University of Pune, Pune

  • Desta H (2021) Local perceptions of ecosystem services and human-induced degradation of Lake Ziway in the Rift Valley region of Ethiopia. Ecol Ind 127:107786. https://doi.org/10.1016/j.ecolind.2021.107786

    Article  Google Scholar 

  • Ellis EC, Pascual U, Mertz O (2019) Ecosystem services and nature’s contribution to people: negotiating diverse values and trade-offs in land systems. Curr Opin Environ Sustain 38:86–94

    Article  Google Scholar 

  • Früh-Müller A, Hotes S, Breuer L, Wolters V, Koellner T (2016) Regional patterns of ecosystem services in cultural landscapes. Land 5(17):2–19. https://doi.org/10.3390/land5020017

    Article  Google Scholar 

  • Fu B, Li Y, Wang Y, Zhang B, Yin S, Zhu H, Xing Z (2016) Evaluation of ecosystem service value of riparian zone using land use data from 1986 to 2012. Ecol Ind 69:873–881

    Article  Google Scholar 

  • Gao J, Li F, Gao H, Zhou Ch, Zhang X (2016) The impact of land-use changes on water-related ecosystem services: a study of the Guishui River Basin, Beijing, China. J Cleaner Product S0959–6526(16):00084–00086. https://doi.org/10.1016/j.jclepro.2016.01.049

    Article  Google Scholar 

  • Gaertner BA, Zegre N, Warner T, Fernandez R, He Y, Merriam R (2019) Climate, forest growing season, and evapotranspiration changes in the central Appalachian Mountains, USA. Sci Total Environ 650:1371–1381. https://doi.org/10.1016/j.scitotenv.2018.09.129

    Article  CAS  PubMed  Google Scholar 

  • Ge G, Shi Z, Zhu Y, Yang X, Hao Y (2020) Land use/cover classification in an arid desert-oasis mosaic landscape of China using remote sensed imagery: Performance assessment of four machine learning algorithms. Global Ecol Conserv 22:e00971

    Article  Google Scholar 

  • Geng W, Li Y, Zhang P, Yang D, Jing W, Rong T (2022) Analyzing spatio-temporal changes and trade-offs/synergies among ecosystem services in the Yellow River Basin, China. Ecol Indicators 138:108825

    Article  Google Scholar 

  • González-García A, Palomo I, González J, López G, Montes G (2020) Quantifying spatial supply-demand mismatches in ecosystem services provides insights for land-use planning. Land Use Pol 94:104493. https://doi.org/10.1016/j.landusepol.2020.104493

    Article  Google Scholar 

  • Harshaw HW, Sheppard SRJ (2013) Using the recreation opportunity spectrum to evaluate the temporal impacts of timber harvesting on outdoor recreation settings. J Outdoor Recreat Tour 1:40–50

    Article  Google Scholar 

  • Heydari SH, Mountrakis G (2019) Meta-analysis of deep neural networks in remote sensing: a comparative study of mono-temporal classification to support vector machines. ISPRS J Photogramm Remote Sens 152:192–210. https://doi.org/10.1016/j.isprsjprs.2019.04.016

    Article  Google Scholar 

  • Hu Y, Peng J, Liu Y, Tian L (2018) Integrating ecosystem services trade-offs with paddy land-to-dry land decisions: a scenario approach in Erhai Lake Basin, Southwest China. Sci Total Environ 625:849–860

    Article  CAS  PubMed  Google Scholar 

  • Kafy AA, Saha M, Rahaman ZA, Rahman MT, Liu D, Fattah MA, Rakib AA, Al Dousari AE, Rahaman S, Hasan M, Ahasan M (2022) Predicting the impacts of land use/land cover changes on seasonal urban thermal characteristics using machine learning algorithms. Build Environ 109066. https://doi.org/10.1016/j.buildenv.2022.109066

  • Karimi F, Sultana S, Babakan AS, Suthaharan S (2019) An enhanced support vector machine model for urban expansion prediction. Comput Environ Urban Syst 75:61–75. https://doi.org/10.1016/j.compenvurbsys.2019.01.001

    Article  Google Scholar 

  • Kienast F, Degenhardt B, Weilenmann B, Waeger Y, Buchecker M (2012) GIS-assisted mapping of landscape suitability for nearby recreation. Landsc Urban Plan 105:385–399. https://doi.org/10.1016/j.landurbplan.2012.01.015

    Article  Google Scholar 

  • Kim I, Arnhold S, Ahn S, Le B, Park KSJ, Koellner T (2019) Land use change and ecosystem services in mountainous watersheds: Predicting the consequences of environmental policies with cellular automata and hydrological modeling. Environ Model Softw 122:103982

    Article  Google Scholar 

  • Kumar M, Denis DM, Singh SK, Szabó S, Suryavanshi S (2018) Landscape metrics for assessment of land cover change and fragmentation of a heterogeneous watershed. Remote Sens Appl: Soc Environ 10:224–233

    Google Scholar 

  • Kusi KK, Khattabi A, Mhammdi N, Lahssini S (2020) Prospective evaluation of the impact of land use change on ecosystem services in the Ourika watershed, Morocco. Land Use Policy 97:104796

    Article  Google Scholar 

  • Lang YQ, Song W, Zhang Y (2017) Responses of the water-yield ecosystem service to climate and land use change in Sancha River Basin, China. Phys Chem Earth 101:102–111

    Article  Google Scholar 

  • Lavorel S, Rey PL, Grigulis K, Zawada M, Byczek G (2020) Interactions between outdoor recreation and iconic terrestrial vertebrates in two French alpine national parks. Ecosyst Serv 45:101155. https://doi.org/10.1016/j.ecoser.2020.101155

    Article  Google Scholar 

  • Li B, Yang Z, Cai Y, Xie Y, Guo H, Wang Y, Qi Z (2022) Prediction and valuation of ecosystem service based on land use/land cover change: a case study of the Pearl River Delta. Ecol Eng 179:106612

    Article  Google Scholar 

  • Li G, Fang C, Wang S (2016) Exploring spatiotemporal changes in ecosystem-service values and hotspots in China. Sci Total Environ 545:609–620

    Article  PubMed  Google Scholar 

  • Li R, Shi Y, Feng C, Guo L (2021) The spatial relationship between ecosystem service scarcity value and urbanization from the perspective of heterogeneity in typical arid and semiarid regions of China. Ecol Ind 132:108299

    Article  Google Scholar 

  • Li Y (2017) Spatially explicit quantification of the interactions among ecosystem services. Landscape Ecol 32:1181–1199

    Article  Google Scholar 

  • Li X, Yu X, Hou X, Liu Y, Li H, Zhou Y, Xia S, Liu Y, Duan H, Wang Y, Dou Y (2020) Valuation of wetland ecosystem services in national nature reserves in China’s Coastal Zones. Sustainability 12(8):e3131. https://doi.org/10.3390/su12083131

    Article  Google Scholar 

  • Liu J, Yan T, Shen Z (2021) Sources, transformations of suspended particulate organic matter and their linkage with landscape patterns in the urbanized Beiyun river Watershed of Beijing, China. Sci Total Environ 791:148309

  • Ma SH, Wang L, Zhu D, Zhang J (2021) Spatiotemporal changes in ecosystem services in the conservation priorities of the southern hill and mountain belt, China. Ecol Indicators 122:107225. https://doi.org/10.1016/j.ecolind.2020.107225

    Article  Google Scholar 

  • Maes J, Paracchini ML, Zulian G, Dunbar MB, Alkemade R (2012) Synergies and trade-offs between ecosystem service supply, biodiversity, and habitat conservation status in Europe. Biol Cons 155:1–12. https://doi.org/10.1016/j.biocon.2012.06.016

    Article  Google Scholar 

  • Marlianingrum PR, Kusumastanto T, Adrianto L, Fahrudin A (2021) Valuing habitat quality for managing mangrove ecosystem services in coastal Tangerang District, Indonesia. Mar Policy 133:104747

  • Martínez ML, Pérez-Maqueo O, Vázquez G, Castillo-Campos G, García-Franco J, Mehltreter K, Equihua M, Landgrave R (2009) Effects of land use change on biodiversity and ecosystem services in tropical montane cloud forests of Mexico. For Ecol Manage 258:1856–1863. https://doi.org/10.1016/j.foreco.2009.02.023

    Article  Google Scholar 

  • Martinez-Harms MJ, Bryan BA, Figueroa E, Pliscoff P, Runting RK, Wilson KA (2017) Scenarios for land use and ecosystem services under global change. Ecosyst Serv 25:56–68. https://doi.org/10.1016/j.ecoser.2017.03.021

    Article  Google Scholar 

  • Marzec RP (2018) Securing the future in the anthropocene: a critical analysis of the millennium ecosystem assessment scenarios. Elementa 6. https://doi.org/10.1525/elementa.294

  • Mexia T, Vieira J, Príncipe A, Anjos A, Silva P, Lopes N, Freitas C, Reis MS, Correia O, Branquinho C, Pinho P (2018) Ecosystem services: Urban parks under a magnifying glass. Environ Res 160:469–478. https://doi.org/10.1016/j.envres.2017.10.023

    Article  CAS  PubMed  Google Scholar 

  • Milheiras SG, Mace GM (2019) Assessing ecosystem service provision in a tropical region with high forest cover: Spatial overlap and the impact of land use change in Amapá, Brazil. Ecol Ind 99:12–18. https://doi.org/10.1016/j.ecolind.2018.12.013

    Article  Google Scholar 

  • Mirghaed FA, Mohammadzadeh M, Salmanmahiny A, Mirkarimi SH (2020) Decision scenarios using ecosystem services for land allocation optimization across Gharehsoo watershed in Northern Iran. Ecol Ind 117:106645

    Article  Google Scholar 

  • Mirsangari MM, Zarandian A, Mohammadyari F, Suziedelyte-Visockiene J (2020) Investigation of the impacts of urban vegetation loss on the ecosystem service of air pollution mitigation in Karaj, metropolis Iran. J Environ Monitor Assess 192:501. https://doi.org/10.1007/s10661-020-08399-8

    Article  CAS  Google Scholar 

  • Mohammadyari F, Mirsanjari MM, Suziedelyte Visockiene J, Zarandian A (2020) Evaluation of change in land usage and land cover in Karaj, Iran. Environmental Engineering. Proceedings of the International Conference on Environmental Engineering 11:1–8. Vilnius Gediminas Technical University, Department of Construction Economics and Property

  • Morse WC, Stern M, Blahna D, Stein T (2022) Recreation as a transformative experience: Synthesizing the literature on outdoor recreation and recreation ecosystem services into a systems framework. J Outdoor Recreation Tourism 38:100492. https://doi.org/10.1016/j.jort.2022.100492

  • Nie X, Lu B, Chen Z, Yang Y, Chen S, Chen Z, Wang H (2020) Increase or decrease? Integrating the CLUMondo and InVEST models to assess the impact of the implementation of the Major Function Oriented Zone planning on carbon storage. Ecol Ind 118:106708

    Article  CAS  Google Scholar 

  • Ougougdal HA, Khebiza MY, Messouli M, Bounoua L (2020) Delineation of vulnerable areas to water erosion in a mountain region using SDR-InVEST model: A case study of the Ourika watershed, Morocco. Scientific African 10:e00646

    Article  Google Scholar 

  • Pellissier V, Mimet A, Fontaine C, Svenning JC, Couvet D (2017) Relative importance of the land-use composition and intensity for the bird community composition in anthropogenic landscapes. Ecol Evol 7:10513–10535. https://doi.org/10.1002/ece3.3534

    Article  PubMed  PubMed Central  Google Scholar 

  • Peng S, Li S (2021) Scale relationship between landscape pattern and water quality in different pollution source areas: a case study of the Fuxian Lake watershed, China. Ecol Indicators 121:107136

    Article  CAS  Google Scholar 

  • Pessacg N, Flaherty S, Brandizi L, Solman C, Pascual M (2015) Getting water right: a case study in water yield modelling based on precipitation data. Sci Total Environ 537:225–234. https://doi.org/10.1016/j.scitotenv.2015.07.148

    Article  CAS  PubMed  Google Scholar 

  • Plieninger T, Torralba M, Hartel T, Fagerholm N (2019) Perceived ecosystem services synergies, trade-offs, and bundles in European high nature value farming landscapes. Landscape Ecol 34:1565–1581

    Article  Google Scholar 

  • Ramyar R (2019) Social–ecological mapping of urban landscapes: Challenges and perspectives on ecosystem services in Mashhad, Iran. Habitat Int 92:102043

    Article  Google Scholar 

  • Rana VK, Suryanarayana TMV (2020) Performance evaluation of MLE, RF and SVM classification algorithms for watershed scale land use/land cover mapping using sentinel 2 bands. Remote Sens Appl: Soc Environ 19:100351

    Google Scholar 

  • Redhead JW, Stratford C, Sharps K, Jones L, Ziv G, Clarke D, Oliver TH, Bullock NM (2016) Empirical validation of the InVEST water yield ecosystem service model at a national scale. Sci Total Environ 569–570:1418–1426. https://doi.org/10.1016/j.scitotenv.2016.06.227

    Article  CAS  PubMed  Google Scholar 

  • Renard KG, Foster GR, Weesies GA, McCool DK, Yoder DC (1997) Predicting soil erosion by water: a guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE), vol 703. United States Department of Agriculture, Washington, DC

    Google Scholar 

  • Roose E (1996) Land husbandry: Components and strategy, vol 70. FAO, Rome

    Google Scholar 

  • Sahle M, Saito O, Fürst C, Yeshitela K (2019) Quantifying and mapping of water-related ecosystem services for enhancing the security of the food-water-energy nexus in tropical data–sparse catchment. Sci Total Environ 646:573–586. https://doi.org/10.1016/j.scitotenv.2018.07.347

    Article  CAS  PubMed  Google Scholar 

  • Sannigrahi S, Pilla F, Zhang Q, Chakraborti S, Wang Y, Basu B, Basu AS, Joshi PK, Keesstra S, Roy PS, Sutton PC (2021) Examining the effects of green revolution led agricultural expansion on net ecosystem service values in India using multiple valuation approaches. J Environ Manage 277:e111381. https://doi.org/10.1016/j.jenvman.2020.111381

    Article  Google Scholar 

  • Schröter M, Bonn A, Klotz S, Seppelt R, Baessler C (2019) Ecosystem services: understanding drivers, opportunities, and risks to move towards sustainable Land management and governance. In: Schröter M, Bonn A, Klotz S, Seppelt R, Baessler C (eds) Atlas of Ecosystem Services: Drivers, Risks, and Societal Responses. Springer International Publishing, Cham, pp 401–403. https://doi.org/10.1007/978-3-319-96229-0_60

  • Sharp R, Tallis HT, Ricketts T, Guerry AD, Wood SA, Chaplin-Kramer R, Nelson E, Ennaanay D, Wolny S, Olwero N, Vigerstol K, Pennington D, Mendoza G, Aukema J, Foster J, Forrest J, Cameron D, Arkema K, Lonsdorf E, Kennedy C, Verutes G, Kim CK, Guannel G, Papenfus M, Toft J, Marsik M, Bernhardt J, Griffin R, Glowinski K, Chaumont N, Perelman A, Lacayo M, Mandle L, Hamel P, Vogl AL, Rogers L, Bierbower W, Denu D, Douglass J (2020) InVEST 3.7.0 user's guide. The Natural Capital Project. Stanford University, University of Minnesota, The Nature Conservancy, and World Wildlife Fund. https://invest-userguide.readthedocs.io/en/3.5.0/

  • Silva LP, Xavier A, Silva RM, Santos G (2020) Modeling land cover change based on an artificial neural network for a semiarid river basin in Northeastern Brazil. Global Ecol Conserv 21:e00811. https://doi.org/10.1016/j.gecco.2019-00811

    Article  Google Scholar 

  • Sujetovienė G, Dabašinskas G (2022) Interactions between changes in land cover and potential of ecosystem services in Lithuania at temporal and spatial scale. Ecol Complex 49:100984

    Article  Google Scholar 

  • Sun X, Crittenden JC, Li F, Lu Z, Dou X (2018) Urban expansion simulation and the spatio-temporal changes of ecosystem services, a case study in Atlanta Metropolitan area USA. Sci Total Environ 622–623:974–987. https://doi.org/10.1016/j.scitotenv.2017.12.062

    Article  CAS  PubMed  Google Scholar 

  • Sun X, Li F (2017) Spatiotemporal assessment and trade-offs of multiple ecosystem services based on land use changes in Zengcheng, China. Sci Total Environ 609:1569–1581. https://doi.org/10.1016/j.scitotenv.2017.07.221

    Article  CAS  PubMed  Google Scholar 

  • Tolessa T, Kidane M, Bezie A (2021) Assessment of the linkages between ecosystem service provision and land use/land cover change in Fincha watershed. North-Western Ethiopia Heliyon 7(7):e07673

    PubMed  Google Scholar 

  • Tolessa T, Senbeta F, Kidane M (2017) The impact of land use/land cover change on ecosystem services in the central highlands of Ethiopia. Ecosyst Serv 23:47–54

    Article  Google Scholar 

  • Vallecillo S, La Notte A, Zulian G, Ferrini S, Maes J (2019) Ecosystem services accounts: Valuing the actual flow of nature-based recreation from ecosystems to people. Ecol Model 392:196–211. https://doi.org/10.1016/j.ecolmodel.2018.09.023

    Article  Google Scholar 

  • Vallet A (2018) Relationships between ecosystem services: comparing methods for assessing tradeoffs and synergies. Ecol Econ 1(150):96–106

    Article  Google Scholar 

  • Vaz AS, Kueffer C, Kull CA, Richardson DM, Vicente JR, Kühn I, Schröter M, Hauck J, Bonn A, Honrado JP (2017) Integrating ecosystem services and disservices: Insights from plant invasions. Ecosyst Serv 23:94–107

    Article  Google Scholar 

  • Wang K, Zhang C, Chen H, Yue Y, Zhang W, Zhang M, Qi X, Fu Z (2019) Karst landscapes of China: Patterns, ecosystem processes and services. Landscape Ecol 34(12):2743–2763

    Article  Google Scholar 

  • Wang H, Zhang M, Wang C, Wang K, Wang C, Li Y, Bai X, Zhou Y (2022) Spatial and temporal changes of landscape patterns and their effects on ecosystem services in the Huaihe River Basin, China. Land 11(4):513

    Article  CAS  Google Scholar 

  • Woznicki SA, Cada P, Wickham J, Schmidt M, Baynes J, Mehaffey M, Neale A (2020) Sediment retention by natural landscapes in the conterminous United States. Sci Total Environ 745:140972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu X, Wang S, Fu B, Liu Y, Zhu Y (2018) Land use optimization based on ecosystem service assessment: a case study in the Yanhe watershed. Land Use Pol 72:303–312. https://doi.org/10.1016/j.landusepol.2018.01.003

    Article  Google Scholar 

  • Yan F, Zhang S (2019) Ecosystem service decline in response to wetland loss in the Sanjiang Plain, Northeast China. Ecol Eng 130:117–121. https://doi.org/10.1016/j.ecoleng.2019.02.009

    Article  Google Scholar 

  • Yang S, Zhao W, Liu Y, Wang S, Wang J, Zhai R (2018) Influence of land use change on the ecosystem service trade-offs in the ecological restoration area: dynamics and scenarios in the Yanhe watershed, China. Sci Total Environ 644:556–566. https://doi.org/10.1016/j.scitotenv.2018.06.348

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Zhang D, Nan Y, Liu Zh, Zheng W (2019) Modeling urban expansion in the transnational area of Changbai Mountain: a scenario analysis based on the zoned Land Use Scenario Dynamics-urban model. Sustain Cities Soc 50:101622

    Article  Google Scholar 

  • Yi H, Güneralp B, Kreuter UP, Güneralp İ, Filippi AM (2018) Spatial and temporal changes in biodiversity and ecosystem services in the San Antonio River Basin, Texas, from 1984 to 2010. Sci Total Environ 619–620:259–1271

    Google Scholar 

  • Yohannes H, Soromessa T, Argaw M, Dewan A (2021) Spatio-temporal changes in habitat quality and linkage with landscape characteristics in the Beressa watershed, Blue Nile basin of Ethiopian highlands. J Environ Manage 281:111885

    Article  PubMed  Google Scholar 

  • Zarandian A, Baral H, Stork NE, Ling MA, Yavari AR, Jafari HR, Amirnejad H (2017) Modeling of ecosystem services informs spatial planning in lands adjacent to the Sarvelat and Javaherdasht protected area in Northern Iran. Land Use Pol 61:487–500. https://doi.org/10.1016/j.landusepol.2016.12.003

    Article  Google Scholar 

  • Zarandian A, Baral H, Yavari AR, Jafari HR, Stork NE, Ling MA, Amirnejad H (2016) Anthropogenic decline of ecosystem services threatens the integrity of the unique Hyrcanian (Caspian) forests in Northern Iran. Forests 7(51):1–27. https://doi.org/10.3390/f7030051

    Article  Google Scholar 

  • Zhan CS, Xu ZX, Ye AZ, Su HB (2011) LUCC and its impact on run-off yield in the Bai River catchment–upstream of the Miyun Reservoir basin. J Plant Ecol 4:61–66

    Article  Google Scholar 

  • Zhang D, Huang Q, He Ch, Wu J (2017) Impacts of urban expansion on ecosystem services in the Beijing-Tianjin-Hebei urban agglomeration, China: a scenario analysis based on the Shared Socioeconomic Pathways. Resour Conserv Recycl 125:115–130. https://doi.org/10.1016/j.resconrec.2017.06.003

    Article  Google Scholar 

  • Zhang F, Yushanjiang A, Jing Y (2019) Assessing and predicting changes of the ecosystem service values based on land use/cover change in Ebinur Lake Wetland National Nature Reserve, Xinjiang, China. Sci Total Environ 656:1133–1144. https://doi.org/10.1016/j.scitotenv.2018.11.444

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Wang B, Li Liu D, Zhang M, Feng P, Cheng L, Yu Q, Eamus D (2019) Impacts of future climate change on water resource availability of eastern Australia: a case study of the Manning River basin. Hydrology 573:49–59. https://doi.org/10.1016/j.jhydrol.2019.03.067

    Article  Google Scholar 

  • Zhang L, Hickel K, Dawes W, Chiew FH, Western A, Briggs P (2004) A rational function approach for estimating mean annual evapotranspiration. J Water Resour Res 40:169–183

  • Zhou Y, Ning L, Bai X (2018) Spatial and temporal changes of human disturbances and their effects on landscape patterns in the Jiangsu coastal zone, China. Ecol Indicators 1(93):111–122

    Article  Google Scholar 

  • Zulian G, Paracchini ML, Maes J, Liquete C (2013) ESTIMAP: Ecosystem services mapping at European scale. EUR 26474. Luxembourg (Luxembourg): Publications Office of the European Union, JRC87585. https://doi.org/10.2788/6471

Download references

Acknowledgements

The authors of this article would like to thank Ilam University for their supports.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the study conception and design of this paper. Material preparation, data collection and analysis were performed by Mohsen Tavakoli and Fatemeh Mohammadyari.

Corresponding author

Correspondence to Mohsen Tavakoli.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tavakoli, M., Mohammadyari, F. Modeling the spatial distribution of multiple ecosystem services in Ilam dam watershed, Western Iran: identification of areas for spatial planning. Urban Ecosyst 26, 459–478 (2023). https://doi.org/10.1007/s11252-022-01297-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11252-022-01297-6

Keywords

Navigation