Skip to main content

Advertisement

Log in

Aquatic biodiversity loss in Andean urban streams

  • Published:
Urban Ecosystems Aims and scope Submit manuscript

Abstract

Andean rivers support an amazing biodiversity and provide important environmental services for Andean landscapes like water for agriculture and human consumption. Urban areas in Andean countries have grown at an accelerated rate in the last decades. As a consequence, a lack of wastewater treatment and riparian preservation have threatened these streams. We studied urban, agricultural, and well-preserved streams in the Upper Guayllabamba River Basin, where Quito, the capital city of Ecuador, is located. We found an aquatic insect richness loss of 78% in urban impacted streams. Urbanization extent within a watershed was strongly related to pollution and water quality decline, and aquatic insect community composition shifts to less diverse assemblages. Urban streams in Quito have lost most of their biodiversity and ecosystem services. However, they are important green areas for citizens and deserve better attention. Well-preserved streams in the area need protection since they host a rich biodiversity that we are starting to describe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and material

Data is available in the text and supplementary material.

References

  • Acosta R, Rios B, Rieradevall M, Prat N (2009) Proposal for an evaluation protocol of the ecological quality of Andean rivers (CERA) and its use in two basins in Ecuador and Peru. Limnetica 28:35–64

    Article  Google Scholar 

  • Allan JD, Erickson DL, Fay J (1997) The influence of catchment land use on stream integrity across multiple spatial scales. Freshw Biol 37:149–161. https://doi.org/10.1046/j.1365-2427.1997.d01-546.x

    Article  Google Scholar 

  • APHA, AWWA, WEF (2012) Standard Methods for examination of water and wastewater. 22nd ed. Washington: American Public Health Association. 1360 pp. ISBN 978–087553–013–0

  • Bivins A, North D, Ahmad A et al (2020) Wastewater-Based Epidemiology: Global Collaborative to Maximize Contributions in the Fight Against COVID-19. Environ Sci Technol. https://doi.org/10.1021/acs.est.0c02388

    Article  Google Scholar 

  • Booth DB, Roy AH, Smith B, Capps KA (2016) Global perspectives on the urban stream syndrome. Freshw Sci 35:412–420. https://doi.org/10.1086/684940

    Article  Google Scholar 

  • Bremer L, Vogl AL, De Bièvre B, Petry P (2016) Bridging theory and practice for hydrological monitoring in Water Funds

  • Chang F-H, Lawrence JE, Rios-Touma B, Resh VH (2014) Tolerance values of benthic macroinvertebrates for stream biomonitoring: Assessment of assumptions underlying scoring systems worldwide. Environ Monit Assess. https://doi.org/10.1007/s10661-013-3523-6

    Article  Google Scholar 

  • Chiu T, Fang D, Chen J, Wang Y, Jeris C (2001) A robust and scalable clustering algorithm for mixed type attributes in large database environment. In Proceedings of the 7th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining 2001, pages 263–268

  • Clarke KR, Gorley RN (2005) PRIMER 6: Getting started with v6. 1–12

  • Copernicus Sentinel data (2017) Retrieved from https://scihub.copernicus.eu/dhus/#/home 18th July 2018, processed by ESA

  • da Cruz E Sousa R, Ríos-Touma B (2017) Stream restoration in Andean cities: learning from contrasting restoration approaches. Urban Ecosyst. https://doi.org/10.1007/s11252-017-0714-x

    Article  Google Scholar 

  • Dominguez E, Encalada AC, Fernandez HR, Giorgi ADN, Marchese MR, Miserendino ML, Munne A, Prat N, Rios-Touma B (2021) Biomonitoreo en ríos de Argentina: un camino por recorrer. Ecol Aust 8–2021:934–949

    Google Scholar 

  • Domínguez E, Fernández HR (2009) Macroinvertebrados bentónicos sudamericanos. Sistemática y biología. Fundación Miguel Lillo, Tucumán, Argentina, 656pp

  • Dominguez E, Molineri C, Pescador ML et al (2006) Ephemeroptera of South America. In: Ephemeroptera of South America. Pensoft Publishers

  • Donoso JM, Rios-Touma B (2020) Microplastics in tropical Andean rivers: A perspective from a highly populated Ecuadorian basin without wastewater treatment. Heliyon. https://doi.org/10.1016/j.heliyon.2020.e04302

    Article  Google Scholar 

  • ECLAC (2022) CEPALSTAT: databases and statistical publications. Economic Commission for Latin American and the Caribbean. https://statistics.cepal.org/portal/cepalstat/dashboard.html?indicator_id=1&area_id=1&lang=es. Accessed 8 Mar 2022

  • Eerkes-Medrano D, Thompson R (2018) Chapter 4 - Occurrence, fate, and effect of microplastics in freshwater systems. In: Zeng EYBT-MC in AE (ed). Elsevier, pp 95–132

  • Empresa Pública Metropolitana de Agua Potable y Saneamiento (2021) Programa para la descontaminación de los ríos de Quito. https://www.aguaquito.gob.ec/programa-para-la-descontaminacion-de-los-rios-de-quito/. Accessed 1 Mar 2021

  • Encalada AC, Flecker AS, Poff NL et al (2019) A global perspective on tropical montane rivers. Science 365:1124–1129. https://doi.org/10.1126/science.aax1682

    Article  CAS  Google Scholar 

  • European Commission (2000) Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy

  • Feio MJ, Hughes RM, Callisto M et al (2021) The Biological Assessment and Rehabilitation of the World’s Rivers: An Overview. Water 13:371. https://doi.org/10.3390/w13030371

    Article  CAS  Google Scholar 

  • Fernandez H, Dominguez E (2001) Guia para la determinacion de artropodos bentonicos sudamericanos

  • Guerrero-Latorre L, Ballesteros I, Villacrés-Granda I et al (2020) SARS-CoV-2 in river water: Implications in low sanitation countries. Sci Total Environ 743:140832. https://doi.org/10.1016/j.scitotenv.2020.140832

    Article  CAS  Google Scholar 

  • Guerrero-Latorre L, Romero B, Bonifaz E et al (2018) Quito’s virome: Metagenomic analysis of viral diversity in urban streams of Ecuador’s capital city. Sci Total Environ 645:1334–1343. https://doi.org/10.1016/j.scitotenv.2018.07.213

    Article  CAS  Google Scholar 

  • Hamada N, Thorp JH, Rogers C (2018) Keys to Neotropical Hexapoda: Thorp and Covich’s Freshwater Invertebrates. In Elsevier Academic press (Vol 3). Elsevier. 795 pp

  • Holzenthal RW, Ríos-Touma B, Rázuri-Gonzales E (2017) New species of the endemic Neotropical caddisfly genus Contulma from the Andes of Ecuador (Trichoptera: Anomalopsychidae). PeerJ. https://doi.org/10.7717/peerj.3967

    Article  Google Scholar 

  • Iñiguez-Armijos C, Leiva A, Frede HG, Hampel H, Breuer L (2014) Deforestation and benthic indicators: How much vegetation cover is needed to sustain healthy Andean streams? PLoS ONE. https://doi.org/10.1371/journal.pone.0105869

    Article  Google Scholar 

  • Iñiguez-Armijos C, Tapia-Armijos MF, Wilhelm F, Breuer L (2022) Urbanisation process generates more independently-acting stressors and ecosystem functioning impairment in tropical Andean streams. J Environ Manag. https://doi.org/10.1016/j.jenvman.2021.114211

    Article  Google Scholar 

  • Jost L (2006) Entropy and diversity. Oikos 113:363–375. https://doi.org/10.1111/j.2006.0030-1299.14714.x

    Article  Google Scholar 

  • Kirschner A, Kavka GG, Velimirov B, Mach RL, Sommer R, Farnleitner AH (2009) Microbiological water quality along the Danube River: Integrating data from two whole-river surveys and a transnational monitoring network. Water Res 43(15):3673–3684. https://doi.org/10.1016/j.watres.2009.05.034

    Article  CAS  Google Scholar 

  • Kvifte GM, Wagner R (2017) Psychodidae (sand flies, moth flies or owl flies). In Kirk-Spriggs AH, Sinclair BJ (eds) Manual of Afrotropical Diptera (Vol 5, pp 607–632). South African National Biodiversity Institute (SANBI Publishing)

  • Mara DD, Feachem RGA (1999) Water-and excreta-related diseases: unitary environmental classification. J Environ Eng 125:334–339

    Article  CAS  Google Scholar 

  • Ministerio del Ambiente Ecuador (2015) Tulsma. Ministerio del Ambiente, Ecuador, Quito, Ecuador

  • Moore AA, Palmer MA (2005) Invertebrate biodiversity in agricultural and urban headwater streams: Implications for conservation and management. Ecol Appl 15:1169–1177. https://doi.org/10.1890/04-1484

    Article  Google Scholar 

  • Myers N, Mittermeier RA, Mittermeier CG et al (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858

    Article  CAS  Google Scholar 

  • Oleas N, Ríos-Touma B, Altamirano PP, Bustamante MR (2016) Plantas de las quebradas de Quito: Guía Práctica de Identificación de Plantas de Ribera. Universidad Tecnológica Indoamérica

  • Ríos-Touma B, Acosta R, Prat N (2014) The Andean biotic index (ABI): Revised tolerance to pollution values for macroinvertebrate families and index performance evaluation. Rev Biol Trop 62:249–273

    Article  Google Scholar 

  • Ríos-Touma B, Holzenthal RW, Huisman J et al (2017) Diversity and distribution of the Caddisflies (Insecta: Trichoptera) of Ecuador. PeerJ 5:e2851. https://doi.org/10.7717/peerj.2851

    Article  Google Scholar 

  • Ríos-Touma B, Ramírez A (2019) Chapter 12 - Multiple stressors in the Neotropical region: Environmental impacts in biodiversity hotspots. In: Sabater S, Elosegi A, Ludwig R (eds) Multiple Stressors in River Ecosystems. Elsevier, pp 205–220

    Chapter  Google Scholar 

  • Rodriguez DJ, Serrano HA, Delgado A et al (2020) From Waste to Resource - Shifting paradigms for smarter wastewater interventions in Latin America and the Caribbean. Washington, D.C

  • Satterthwaite D (2003) The links between poverty and the environment in urban areas of Africa, Asia, and Latin America. Ann Am Acad Pol Soc Sci 590:73–92

    Article  Google Scholar 

  • Smith RF, Hawley RJ, Neale MW et al (2016) Urban stream renovation: Incorporating societal objectives to achieve ecological improvements. Freshw Sci. https://doi.org/10.1086/685096

    Article  Google Scholar 

  • Torremorell A, Hegoburo C, Brandimarte AL et al (2021) Present and future threats for the ecological quality management of South American freshwater ecosystems. Inl Waters. https://doi.org/10.1080/20442041.2019.1608115

    Article  Google Scholar 

  • Utz RM, Hilderbrand RH, Boward DM (2009) Identifying regional differences in threshold responses of aquatic invertebrates to land cover gradients. Ecol Indic 9:556–567. https://doi.org/10.1016/j.ecolind.2008.08.008

    Article  Google Scholar 

  • Villamarín C, Rieradevall M, Prat N (2020) Macroinvertebrate diversity patterns in tropical highland Andean rivers. Limnetica 39:677–691

    Google Scholar 

  • Voloshenko-Rossin A, Gasser G, Cohen K et al (2015) Emerging pollutants in the Esmeraldas watershed in Ecuador: Discharge and attenuation of emerging organic pollutants along the San Pedro-Guayllabamba-Esmeraldas rivers. Environ Sci Process Impacts 17:41–53. https://doi.org/10.1039/c4em00394b

    Article  CAS  Google Scholar 

  • Walsh CJ, Roy AH, Feminella JW et al (2005) The urban stream syndrome: Current knowledge and the search for a cure. J North Am Benthol Soc 24:706–723. https://doi.org/10.1899/04-028.1

    Article  Google Scholar 

  • Walteros JM, Ramírez A (2020) Urban streams in latin america: Current conditions and research needs. Rev Biol Trop 68:S13–S28. https://doi.org/10.15517/RBT.V68IS2.44330

Download references

Acknowledgements

We are grateful with Francis Baquero who helped with the geographical analysis. Special thanks to Xavier Amigo and Nature Experience for its invaluable service during the sampling campaign. This manuscript was greatly improved by the comments and suggestions of 2 anonymous reviewers.

Funding

This work was supported by the Universidad de las Americas, Quito-Ecuador Projects AMB·BRT.17.01 and AMB.BRT.21.01, and was presented at the 5th Symposium of Urbanization and Stream Ecology thanks to a stipend from the US National Science Foundation Grant (award #2012128).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Blanca Ríos-Touma, Laura Guerrero-Latorre; Methodology: Blanca Ríos-Touma, Laura Guerrero-Latorre., Christian Villamarín, Gabriela Jijón, Genoveva Albuja-Granda, Jackie Checa, Edison Bonifaz; Formal analysis and investigation: Blanca Ríos-Touma, Laura Guerrero-Latorre, Gabriela Jijón, Genoveva Albuja-Granda, Jackie Checa, Edison Bonifaz; Writing—original draft preparation: Blanca Ríos-Touma; Writing—review and editing: Blanca Ríos-Touma, Christian Villamarín, Gabriela Jijón; Funding acquisition: Blanca Ríos-Touma, Laura Guerrero-Latorre; Supervision: Blanca Ríos-Touma, Laura Guerrero-Latorre.

Corresponding author

Correspondence to Blanca Ríos-Touma.

Ethics declarations

Ethics approval

No ethics approval was need for this study.

Consent to participate

This study did not involve humans.

Conflicts of interest/Competing interests

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Environmental research permit

002–2017-IC-FLO-FAU-DPAP-MA issued by the Environmental Ministry of Ecuador.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ríos-Touma, B., Villamarín, C., Jijón, G. et al. Aquatic biodiversity loss in Andean urban streams. Urban Ecosyst 25, 1619–1629 (2022). https://doi.org/10.1007/s11252-022-01248-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11252-022-01248-1

Keywords

Navigation