Skip to main content

Urban–rural gradients in soil nutrients beneath Chinese pine (Pinus tabulaeformis Carr.) are affected by land-use

Abstract

Urban–rural gradients of soil nutrients may be affected by many factors including land use, vegetation cover, and management. In this study, focusing on one vegetation type (Chinese pine, Pinus tabulaeformis Carr.) to exclude the effects of vegetation cover, we investigated soil nutrients in three land-use types (neighborhoods, parks and roadsides) along urban–rural gradients in Beijing, China, to explore the differences in soil nutrients across land-use types and the changes of soil nutrients along the urban–rural gradient. Soil nutrients (organic carbon, calcium and magnesium) are significantly higher in neighborhoods and parks than in roadsides, while soil nutrients (except for magnesium) showed no significant differences between in neighborhoods and in parks. Interestingly, soil moisture, nitrate-nitrogen, calcium, magnesium, and available phosphorus and potassium all decreased along urban–rural gradients in parks, while only soil available phosphorus did so in neighborhoods and none soil variables studied showed this trend in roadsides. Thus, land use plays an important role in modifying urban–rural gradients of soil nutrients.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  • Bae J, Ryu Y (2015) Land use and land cover changes explain spatial and temporal variations of the soil organic carbon stocks in a constructed urban park. Landsc Urban Plan 136:57–67

    Article  Google Scholar 

  • Baxter JW, Pickett ST, Dighton J, Carreiro MM (2002) Nitrogen and phosphorus availability in oak forest stands exposed to contrasting anthropogenic impacts. Soil Biol Biochem 34:623–633

    CAS  Article  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Stat Soc: Ser B (methodol) 57:289–300

    Google Scholar 

  • Bennett EM (2003) Soil phosphorus concentrations in Dane County, Wisconsin, USA: an evaluation of the urban–rural gradient paradigm. Environ Manage 32:476–487

    PubMed  Article  Google Scholar 

  • Bowd EJ, Banks SC, Strong CL, Lindenmayer DB (2019) Long-term impacts of wildfire and logging on forest soils. Nat Geosci 12:113

    CAS  Article  Google Scholar 

  • Canedoli C, Ferrè C, El Khair DA, Padoa-Schioppa E, Comolli R (2020) Soil organic carbon stock in different urban land uses: high stock evidence in urban parks. Urban Ecosystems 23(1):159–171

    Article  Google Scholar 

  • Chen FS, Yavitt J, Hu XF (2014) Phosphorus enrichment helps increase soil carbon mineralization in vegetation along an urban-to-rural gradient, Nanchang, China. Appl Soil Ecol 75:181–188

    Article  Google Scholar 

  • Chen H, Zhang W, Gilliam F, Liu L, Huang J, Zhang T, Wang W, Mo J (2013) Changes in soil carbon sequestration in Pinus massoniana forests along an urban-to-rural gradient of southern China. Biogeosciences 10(10):6609–6616

    CAS  Article  Google Scholar 

  • Chen M, Ma LQ, Harris WG (1999) Baseline concentrations of 15 trace elements in Florida surface soils. J Environ Qual 28:1173–1181

    CAS  Article  Google Scholar 

  • Davies R, Hall SJ (2010) Direct and indirect effects of urbanization on soil and plant nutrients in desert ecosystems of the Phoenix metropolitan area, Arizona (USA). Urban Ecosystems 13:295–317

    Article  Google Scholar 

  • Diamond JM (1983) Ecology: Laboratory, field and natural experiments. Nature 304:586–587

    Article  Google Scholar 

  • Fang C, Smith P, Moncrieff JB, Smith JU (2005) Similar response of labile and resistant soil organic matter pools to changes in temperature. Nature 433:57

    CAS  PubMed  Article  Google Scholar 

  • Foti L, Dubs F, Gignoux J, Lata JC, Lerch TZ, Mathieu J et al (2017) Trace element concentrations along a gradient of urban pressure in forest and lawn soils of the Paris region (France). Sci Total Environ 598:938–948

    CAS  PubMed  Article  Google Scholar 

  • Gao X, Asami Y (2011) Preferential size of housing in Beijing. Habitat Int 35:206–213

    Article  Google Scholar 

  • Gregg JW, Jones CG, Dawson TE (2003) Urbanization effects on tree growth in the vicinity of New York City. Nature 424:183

    CAS  PubMed  Article  Google Scholar 

  • Guo P, Su Y, Wan W, Liu W, Zhang H, Sun X et al (2018) Urban Plant Diversity in Relation to Land Use Types in Built-up Areas of Beijing. Chin Geogra Sci 28:100–110

    Article  Google Scholar 

  • Herrmann DL, Schifman LA, Shuster WD (2018) Widespread loss of intermediate soil horizons in urban landscapes. Proc Natl Acad Sci 115:6751–6755

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Hope D, Zhu W, Gries C, Oleson J, Kaye J, Grimm NB et al (2005) Spatial variation in soil inorganic nitrogen across an arid urban ecosystem. Urban Ecosystems 8:251–273

    Article  Google Scholar 

  • Hou G, Delang CO, Lu X, Gao L (2019) Soil organic carbon storage varies with stand ages and soil depths following afforestation. Ann for Res 62(2):3–20

    Google Scholar 

  • Jackson RB, Banner JL, Jobbágy EG, Pockman WT, Wall DH (2002) Ecosystem carbon loss with woody plant invasion of grasslands. Nature 418:623–626

    CAS  PubMed  Article  Google Scholar 

  • Jenerette GD, Jianguo WU, Grimm NB, Hope D (2010) Points, patches, and regions: Scaling soil biogeochemical patterns in an urbanized arid ecosystem. Glob Change Biol 12:1532–1544

    Article  Google Scholar 

  • Kaye J, Majumdar A, Gries C, Buyantuyev A, Grimm N, Hope D et al (2008) Hierarchical Bayesian scaling of soil properties across urban, agricultural, and desert ecosystems. Ecol Appl 18:132–145

    CAS  PubMed  Article  Google Scholar 

  • Kuang W (2012) Spatio-temporal patterns of intra-urban land use change in Beijing, China between 1984 and 2008. Chin Geogra Sci 22:210–220

    Article  Google Scholar 

  • Li T, Zheng W, Zhang S, Jia Y, Li Y, Xu X (2018) Spatial variations in soil phosphorus along a gradient of central city-suburb-exurban satellite. CATENA 170:150–158

    CAS  Article  Google Scholar 

  • Li W, Ouyang Z, Meng X, Wang X (2006) Plant species composition in relation to green cover configuration and function of urban parks in Beijing, China. Ecol Res 21:221–237

    Article  Google Scholar 

  • Li ZG, Zhang GS, Liu Y, Wan KY, Zhang RH, Chen F (2013) Soil nutrient assessment for urban ecosystems in Hubei, China. Plos One 8, e75856.

  • Liu R, Wang M, Chen W (2018) The influence of urbanization on organic carbon sequestration and cycling in soils of Beijing. Landsc Urban Plan 169:241–249

    Article  Google Scholar 

  • Liu R, Wang M, Chen W, Peng C (2016) Spatial pattern of heavy metals accumulation risk in urban soils of Beijing and its influencing factors. Environ Pollut 210:174–181

    CAS  PubMed  Article  Google Scholar 

  • Liu W, Ji C, Zhong J, Jiang X, Zheng Z (2007) Temporal characteristics of the Beijing urban heat island. Theoret Appl Climatol 87:213–221

    Article  Google Scholar 

  • Lorenz K, Lal R (2009) Biogeochemical C and N cycles in urban soils. Environ Int 35:1–8

    CAS  PubMed  Article  Google Scholar 

  • Lovett GM, Traynor MM, Pouyat RV, Carreiro MM, Zhu W-X, Baxter JW (2000) Atmospheric deposition to oak forests along an urban− rural gradient. Environ Sci Technol 34:4294–4300

    CAS  Article  Google Scholar 

  • Loya WM, Pregitzer KS, Karberg NJ, King JS, Giardina CP (2003) Reduction of soil carbon formation by tropospheric ozone under increased carbon dioxide levels. Nature 425:705

    CAS  PubMed  Article  Google Scholar 

  • Lu R (2000) Soil agricultural chemical analysis method. China Agricultural Science and Technology Press, Beijing, pp 1–315

    Google Scholar 

  • Lv H, Wang W, He X, Xiao L, Zhou W, Zhang B (2016) Quantifying tree and soil carbon stocks in a temperate urban forest in Northeast China. Forests 7(9):200

    Article  Google Scholar 

  • Ma X (2007) Studies on soil and atmosphere environment in different green land in Beijing. MS thesis.

  • Mao Q, Huang G, Buyantuev A, Wu J, Luo S, Ma K (2014) Spatial heterogeneity of urban soils: the case of the Beijing metropolitan region. China Ecological Processes 3:23

    Article  Google Scholar 

  • McDonnell MJ, Pickett ST (1990) Ecosystem structure and function along urban-rural gradients: an unexploited opportunity for ecology. Ecology 71(4):1232–1237

    Article  Google Scholar 

  • Meng Y, Cave M, Zhang C (2018) Spatial distribution patterns of phosphorus in top-soils of Greater London Authority area and their natural and anthropogenic factors. Appl Geochem 88:213–220

    CAS  Article  Google Scholar 

  • Mo W, Wang Y, Zhang Y, Zhuang D (2017) Impacts of road network expansion on landscape ecological risk in a megacity, China: A case study of Beijing. Sci Total Environ 574:1000–1011

    CAS  PubMed  Article  Google Scholar 

  • Morisada K, Imaya A, Ono K (2002) Temporal changes in organic carbon of soils developed on volcanic andesitic deposits in Japan. For Ecol Manage 171(1–2):113–120

    Article  Google Scholar 

  • O'Riordan R, Davies J, Stevens C, Quinton JN, Boyko C (2021) The ecosystem services of urban soils: A review. Geoderma 395, 115076.

  • Peng J, Zhao S, Liu Y, Tian L (2016) Identifying the urban-rural fringe using wavelet transform and kernel density estimation: A case study in Beijing City, China. Environ Model Softw 83:286–302

    Article  Google Scholar 

  • Phillips HR, Guerra CA, Bartz ML, Briones MJ, Brown G, Crowther TW et al (2019) Global distribution of earthworm diversity. Science 366:480–485

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Phoenix GK, Emmett BA, Britton AJ, Caporn SJ, Dise NB, Helliwell R et al (2012) Impacts of atmospheric nitrogen deposition: responses of multiple plant and soil parameters across contrasting ecosystems in long-term field experiments. Glob Change Biol 18:1197–1215

    Article  Google Scholar 

  • Polsky C, Grove JM, Knudson C, Groffman PM, Bettez N, Cavender-Bares J et al (2014) Assessing the homogenization of urban land management with an application to US residential lawn care. Proc Natl Acad Sci 111:4432–4437

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Pouyat R, Groffman P, Yesilonis I, Hernandez L (2002) Soil carbon pools and fluxes in urban ecosystems. Environ Pollut 116:S107–S118

    CAS  PubMed  Article  Google Scholar 

  • Pouyat RV, McDonnell MJ, Pickett S (1995) Soil characteristics of oak stands along an urban-rural land-use gradient. J Environ Qual 24:516–526

    CAS  Article  Google Scholar 

  • Pouyat RV, Szlavecz K, Yesilonis ID, Groffman PM, Schwarz K (2010) Chemical, physical, and biological characteristics of urban soils. Urban Ecosyst 119–152.

  • Pouyat RV, Yesilonis ID, Nowak DJ (2006) Carbon storage by urban soils in the United States. J Environ Qual 35:1566–1575

    CAS  PubMed  Article  Google Scholar 

  • Pouyat RV, Yesilonis ID, Russell-Anelli J, Neerchal NK (2007) Soil Chemical and Physical Properties That Differentiate Urban Land-Use and Cover Types. Soilence Society of America Journal 71:1010

    CAS  Article  Google Scholar 

  • Pouyat RV, Yesilonis ID, Szlavecz K, Csuzdi C, Hornung E, Korsós Z et al (2008) Response of forest soil properties to urbanization gradients in three metropolitan areas. Landscape Ecol 23:1187–1203

    Article  Google Scholar 

  • Raciti SM, Hutyra LR, Finzi AC (2012) Depleted soil carbon and nitrogen pools beneath impervious surfaces. Environ Pollut 164:248–251

    CAS  PubMed  Article  Google Scholar 

  • Sharpe DM, Stearns F, Leitner LA, Dorney JR (1986) Fate of natural vegetation during urban development of rural landscapes in southeastern Wisconsin. Urban Ecology 9:267–287

    Article  Google Scholar 

  • Sheikh MA, Kumar M, Bussmann RW (2009) Altitudinal variation in soil organic carbon stock in coniferous subtropical and broadleaf temperate forests in Garhwal Himalaya. Carbon Balance Manage 4(1):1–6

    CAS  Article  Google Scholar 

  • Su Y, Wang X, Wang X, Cui B, Sun X (2019) Leaf and male cone phenophases of Chinese pine (Pinus tabulaeformis Carr.) along a rural-urban gradient in Beijing. China Urban Forestry and Urban Greening 42:61–71

    Article  Google Scholar 

  • Tóth JA, Nagy PT, Krakomperger Z, Veres Z, Kotroczó Z, Kincses S, Fekete I, Papp M, Lajtha K (2011) Effect of litter fall on soil nutrient content and pH, and its consequences in view of climate change (Síkfőkút DIRT Project). Acta Silvatica Et Lignaria Hungarica 7:75–86

    Google Scholar 

  • Vasenev V, Kuzyakov Y (2018) Urban soils as hot spots of anthropogenic carbon accumulation: Review of stocks, mechanisms and driving factors. Land Degrad Dev 29(6):1607–1622

    Article  Google Scholar 

  • Vasenev V, Stoorvogel J, Vasenev I (2013) Urban soil organic carbon and its spatial heterogeneity in comparison with natural and agricultural areas in the Moscow region. CATENA 107:96–102

    CAS  Article  Google Scholar 

  • Wang HF, Qureshi S, Knapp S, Friedman CR, Hubacek K (2015) A basic assessment of residential plant diversity and its ecosystem services and disservices in Beijing, China. Appl Geogr 64:121–131

    Article  Google Scholar 

  • Yu HY, Li TX, Zhang XZ (2010) Nutrient budget and soil nutrient status in greenhouse system. Agricultural Sciences in China 9:871–879

    CAS  Article  Google Scholar 

  • Yuan DG, Zhang GL, Gong ZT, Burghardt W (2007) Variations of soil phosphorus accumulation in Nanjing, China as affected by urban development. J Plant Nutr Soil Sci 170:244–249

    CAS  Article  Google Scholar 

  • Zhang K, Xu XN, Wang Q (2010a) Characteristics of N mineralization in urban soils of Hefei, East China. Pedosphere 20:236–244

    CAS  Article  Google Scholar 

  • Zhang XX, Wu PF, Chen B (2010b) Relationship between vegetation greenness and urban heat island effect in Beijing City of China. Procedia Environ Sci 2:1438–1450

    Article  Google Scholar 

  • Zhang M (2004) Phosphorus accumulation in soils along an urban–rural land use gradient in Hangzhou, southeast China. Commun Soil Sci Plant Anal 35:819–833

    CAS  Article  Google Scholar 

  • Zhao J (2010) Species composition and spatial distribution of urban plants within the built-up areas of Beijing, China. PHD.

  • Zhao J, Ouyang Z, Zheng H, Zhou W, Wang X, Xu W et al (2010) Plant species composition in green spaces within the built-up areas of Beijing, China. Plant Ecol 209:179–179

    Article  Google Scholar 

  • Zhao YG, Zhang GL, Zepp H, Yang JL (2007) Establishing a spatial grouping base for surface soil properties along urban–rural gradient—A case study in Nanjing, China. CATENA 69:74–81

    Article  Google Scholar 

  • Zheng WJ, Fu LG (1978) Flora of China (Vol. 7). Beijing: Science Press 321–329 (in Chinese).

  • Zhu WX, Carreiro MM (1999) Chemoautotrophic nitrification in acidic forest soils along an urban-to-rural transect. Soil Biol Biochem 31:1091–1100

    CAS  Article  Google Scholar 

  • Zhu WX, Carreiro MM (2004) Temporal and spatial variations in nitrogen transformations in deciduous forest ecosystems along an urban–rural gradient. Soil Biol Biochem 36:267–278

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Key Research and Development Program of China (2017YFE0127700) and the National Natural Science Foundation of China (71533005 and 41571053). We sincerely thank Donald M. Waller for his suggestion of revision and polishing language. Also, we thank the editors and reviewers for their valuable comments, which improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoke Wang.

Ethics declarations

Ethical Approval

Not applicable.

Consent for publication

The authors consent to the terms for publication as stated by the journal and its publisher.

Competing interests

The authors have no conflicts of interest to declare.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Su, Y., Cui, B., Ouyang, Z. et al. Urban–rural gradients in soil nutrients beneath Chinese pine (Pinus tabulaeformis Carr.) are affected by land-use. Urban Ecosyst 25, 955–966 (2022). https://doi.org/10.1007/s11252-022-01205-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11252-022-01205-y

Keywords

  • Chinese pine
  • Land-use types
  • Soil nutrients
  • Urban–rural gradients