Bae J, Ryu Y (2015) Land use and land cover changes explain spatial and temporal variations of the soil organic carbon stocks in a constructed urban park. Landsc Urban Plan 136:57–67
Article
Google Scholar
Baxter JW, Pickett ST, Dighton J, Carreiro MM (2002) Nitrogen and phosphorus availability in oak forest stands exposed to contrasting anthropogenic impacts. Soil Biol Biochem 34:623–633
CAS
Article
Google Scholar
Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Stat Soc: Ser B (methodol) 57:289–300
Google Scholar
Bennett EM (2003) Soil phosphorus concentrations in Dane County, Wisconsin, USA: an evaluation of the urban–rural gradient paradigm. Environ Manage 32:476–487
PubMed
Article
Google Scholar
Bowd EJ, Banks SC, Strong CL, Lindenmayer DB (2019) Long-term impacts of wildfire and logging on forest soils. Nat Geosci 12:113
CAS
Article
Google Scholar
Canedoli C, Ferrè C, El Khair DA, Padoa-Schioppa E, Comolli R (2020) Soil organic carbon stock in different urban land uses: high stock evidence in urban parks. Urban Ecosystems 23(1):159–171
Article
Google Scholar
Chen FS, Yavitt J, Hu XF (2014) Phosphorus enrichment helps increase soil carbon mineralization in vegetation along an urban-to-rural gradient, Nanchang, China. Appl Soil Ecol 75:181–188
Article
Google Scholar
Chen H, Zhang W, Gilliam F, Liu L, Huang J, Zhang T, Wang W, Mo J (2013) Changes in soil carbon sequestration in Pinus massoniana forests along an urban-to-rural gradient of southern China. Biogeosciences 10(10):6609–6616
CAS
Article
Google Scholar
Chen M, Ma LQ, Harris WG (1999) Baseline concentrations of 15 trace elements in Florida surface soils. J Environ Qual 28:1173–1181
CAS
Article
Google Scholar
Davies R, Hall SJ (2010) Direct and indirect effects of urbanization on soil and plant nutrients in desert ecosystems of the Phoenix metropolitan area, Arizona (USA). Urban Ecosystems 13:295–317
Article
Google Scholar
Diamond JM (1983) Ecology: Laboratory, field and natural experiments. Nature 304:586–587
Article
Google Scholar
Fang C, Smith P, Moncrieff JB, Smith JU (2005) Similar response of labile and resistant soil organic matter pools to changes in temperature. Nature 433:57
CAS
PubMed
Article
Google Scholar
Foti L, Dubs F, Gignoux J, Lata JC, Lerch TZ, Mathieu J et al (2017) Trace element concentrations along a gradient of urban pressure in forest and lawn soils of the Paris region (France). Sci Total Environ 598:938–948
CAS
PubMed
Article
Google Scholar
Gao X, Asami Y (2011) Preferential size of housing in Beijing. Habitat Int 35:206–213
Article
Google Scholar
Gregg JW, Jones CG, Dawson TE (2003) Urbanization effects on tree growth in the vicinity of New York City. Nature 424:183
CAS
PubMed
Article
Google Scholar
Guo P, Su Y, Wan W, Liu W, Zhang H, Sun X et al (2018) Urban Plant Diversity in Relation to Land Use Types in Built-up Areas of Beijing. Chin Geogra Sci 28:100–110
Article
Google Scholar
Herrmann DL, Schifman LA, Shuster WD (2018) Widespread loss of intermediate soil horizons in urban landscapes. Proc Natl Acad Sci 115:6751–6755
PubMed
PubMed Central
Article
CAS
Google Scholar
Hope D, Zhu W, Gries C, Oleson J, Kaye J, Grimm NB et al (2005) Spatial variation in soil inorganic nitrogen across an arid urban ecosystem. Urban Ecosystems 8:251–273
Article
Google Scholar
Hou G, Delang CO, Lu X, Gao L (2019) Soil organic carbon storage varies with stand ages and soil depths following afforestation. Ann for Res 62(2):3–20
Google Scholar
Jackson RB, Banner JL, Jobbágy EG, Pockman WT, Wall DH (2002) Ecosystem carbon loss with woody plant invasion of grasslands. Nature 418:623–626
CAS
PubMed
Article
Google Scholar
Jenerette GD, Jianguo WU, Grimm NB, Hope D (2010) Points, patches, and regions: Scaling soil biogeochemical patterns in an urbanized arid ecosystem. Glob Change Biol 12:1532–1544
Article
Google Scholar
Kaye J, Majumdar A, Gries C, Buyantuyev A, Grimm N, Hope D et al (2008) Hierarchical Bayesian scaling of soil properties across urban, agricultural, and desert ecosystems. Ecol Appl 18:132–145
CAS
PubMed
Article
Google Scholar
Kuang W (2012) Spatio-temporal patterns of intra-urban land use change in Beijing, China between 1984 and 2008. Chin Geogra Sci 22:210–220
Article
Google Scholar
Li T, Zheng W, Zhang S, Jia Y, Li Y, Xu X (2018) Spatial variations in soil phosphorus along a gradient of central city-suburb-exurban satellite. CATENA 170:150–158
CAS
Article
Google Scholar
Li W, Ouyang Z, Meng X, Wang X (2006) Plant species composition in relation to green cover configuration and function of urban parks in Beijing, China. Ecol Res 21:221–237
Article
Google Scholar
Li ZG, Zhang GS, Liu Y, Wan KY, Zhang RH, Chen F (2013) Soil nutrient assessment for urban ecosystems in Hubei, China. Plos One 8, e75856.
Liu R, Wang M, Chen W (2018) The influence of urbanization on organic carbon sequestration and cycling in soils of Beijing. Landsc Urban Plan 169:241–249
Article
Google Scholar
Liu R, Wang M, Chen W, Peng C (2016) Spatial pattern of heavy metals accumulation risk in urban soils of Beijing and its influencing factors. Environ Pollut 210:174–181
CAS
PubMed
Article
Google Scholar
Liu W, Ji C, Zhong J, Jiang X, Zheng Z (2007) Temporal characteristics of the Beijing urban heat island. Theoret Appl Climatol 87:213–221
Article
Google Scholar
Lorenz K, Lal R (2009) Biogeochemical C and N cycles in urban soils. Environ Int 35:1–8
CAS
PubMed
Article
Google Scholar
Lovett GM, Traynor MM, Pouyat RV, Carreiro MM, Zhu W-X, Baxter JW (2000) Atmospheric deposition to oak forests along an urban− rural gradient. Environ Sci Technol 34:4294–4300
CAS
Article
Google Scholar
Loya WM, Pregitzer KS, Karberg NJ, King JS, Giardina CP (2003) Reduction of soil carbon formation by tropospheric ozone under increased carbon dioxide levels. Nature 425:705
CAS
PubMed
Article
Google Scholar
Lu R (2000) Soil agricultural chemical analysis method. China Agricultural Science and Technology Press, Beijing, pp 1–315
Google Scholar
Lv H, Wang W, He X, Xiao L, Zhou W, Zhang B (2016) Quantifying tree and soil carbon stocks in a temperate urban forest in Northeast China. Forests 7(9):200
Article
Google Scholar
Ma X (2007) Studies on soil and atmosphere environment in different green land in Beijing. MS thesis.
Mao Q, Huang G, Buyantuev A, Wu J, Luo S, Ma K (2014) Spatial heterogeneity of urban soils: the case of the Beijing metropolitan region. China Ecological Processes 3:23
Article
Google Scholar
McDonnell MJ, Pickett ST (1990) Ecosystem structure and function along urban-rural gradients: an unexploited opportunity for ecology. Ecology 71(4):1232–1237
Article
Google Scholar
Meng Y, Cave M, Zhang C (2018) Spatial distribution patterns of phosphorus in top-soils of Greater London Authority area and their natural and anthropogenic factors. Appl Geochem 88:213–220
CAS
Article
Google Scholar
Mo W, Wang Y, Zhang Y, Zhuang D (2017) Impacts of road network expansion on landscape ecological risk in a megacity, China: A case study of Beijing. Sci Total Environ 574:1000–1011
CAS
PubMed
Article
Google Scholar
Morisada K, Imaya A, Ono K (2002) Temporal changes in organic carbon of soils developed on volcanic andesitic deposits in Japan. For Ecol Manage 171(1–2):113–120
Article
Google Scholar
O'Riordan R, Davies J, Stevens C, Quinton JN, Boyko C (2021) The ecosystem services of urban soils: A review. Geoderma 395, 115076.
Peng J, Zhao S, Liu Y, Tian L (2016) Identifying the urban-rural fringe using wavelet transform and kernel density estimation: A case study in Beijing City, China. Environ Model Softw 83:286–302
Article
Google Scholar
Phillips HR, Guerra CA, Bartz ML, Briones MJ, Brown G, Crowther TW et al (2019) Global distribution of earthworm diversity. Science 366:480–485
CAS
PubMed
PubMed Central
Article
Google Scholar
Phoenix GK, Emmett BA, Britton AJ, Caporn SJ, Dise NB, Helliwell R et al (2012) Impacts of atmospheric nitrogen deposition: responses of multiple plant and soil parameters across contrasting ecosystems in long-term field experiments. Glob Change Biol 18:1197–1215
Article
Google Scholar
Polsky C, Grove JM, Knudson C, Groffman PM, Bettez N, Cavender-Bares J et al (2014) Assessing the homogenization of urban land management with an application to US residential lawn care. Proc Natl Acad Sci 111:4432–4437
CAS
PubMed
PubMed Central
Article
Google Scholar
Pouyat R, Groffman P, Yesilonis I, Hernandez L (2002) Soil carbon pools and fluxes in urban ecosystems. Environ Pollut 116:S107–S118
CAS
PubMed
Article
Google Scholar
Pouyat RV, McDonnell MJ, Pickett S (1995) Soil characteristics of oak stands along an urban-rural land-use gradient. J Environ Qual 24:516–526
CAS
Article
Google Scholar
Pouyat RV, Szlavecz K, Yesilonis ID, Groffman PM, Schwarz K (2010) Chemical, physical, and biological characteristics of urban soils. Urban Ecosyst 119–152.
Pouyat RV, Yesilonis ID, Nowak DJ (2006) Carbon storage by urban soils in the United States. J Environ Qual 35:1566–1575
CAS
PubMed
Article
Google Scholar
Pouyat RV, Yesilonis ID, Russell-Anelli J, Neerchal NK (2007) Soil Chemical and Physical Properties That Differentiate Urban Land-Use and Cover Types. Soilence Society of America Journal 71:1010
CAS
Article
Google Scholar
Pouyat RV, Yesilonis ID, Szlavecz K, Csuzdi C, Hornung E, Korsós Z et al (2008) Response of forest soil properties to urbanization gradients in three metropolitan areas. Landscape Ecol 23:1187–1203
Article
Google Scholar
Raciti SM, Hutyra LR, Finzi AC (2012) Depleted soil carbon and nitrogen pools beneath impervious surfaces. Environ Pollut 164:248–251
CAS
PubMed
Article
Google Scholar
Sharpe DM, Stearns F, Leitner LA, Dorney JR (1986) Fate of natural vegetation during urban development of rural landscapes in southeastern Wisconsin. Urban Ecology 9:267–287
Article
Google Scholar
Sheikh MA, Kumar M, Bussmann RW (2009) Altitudinal variation in soil organic carbon stock in coniferous subtropical and broadleaf temperate forests in Garhwal Himalaya. Carbon Balance Manage 4(1):1–6
CAS
Article
Google Scholar
Su Y, Wang X, Wang X, Cui B, Sun X (2019) Leaf and male cone phenophases of Chinese pine (Pinus tabulaeformis Carr.) along a rural-urban gradient in Beijing. China Urban Forestry and Urban Greening 42:61–71
Article
Google Scholar
Tóth JA, Nagy PT, Krakomperger Z, Veres Z, Kotroczó Z, Kincses S, Fekete I, Papp M, Lajtha K (2011) Effect of litter fall on soil nutrient content and pH, and its consequences in view of climate change (Síkfőkút DIRT Project). Acta Silvatica Et Lignaria Hungarica 7:75–86
Google Scholar
Vasenev V, Kuzyakov Y (2018) Urban soils as hot spots of anthropogenic carbon accumulation: Review of stocks, mechanisms and driving factors. Land Degrad Dev 29(6):1607–1622
Article
Google Scholar
Vasenev V, Stoorvogel J, Vasenev I (2013) Urban soil organic carbon and its spatial heterogeneity in comparison with natural and agricultural areas in the Moscow region. CATENA 107:96–102
CAS
Article
Google Scholar
Wang HF, Qureshi S, Knapp S, Friedman CR, Hubacek K (2015) A basic assessment of residential plant diversity and its ecosystem services and disservices in Beijing, China. Appl Geogr 64:121–131
Article
Google Scholar
Yu HY, Li TX, Zhang XZ (2010) Nutrient budget and soil nutrient status in greenhouse system. Agricultural Sciences in China 9:871–879
CAS
Article
Google Scholar
Yuan DG, Zhang GL, Gong ZT, Burghardt W (2007) Variations of soil phosphorus accumulation in Nanjing, China as affected by urban development. J Plant Nutr Soil Sci 170:244–249
CAS
Article
Google Scholar
Zhang K, Xu XN, Wang Q (2010a) Characteristics of N mineralization in urban soils of Hefei, East China. Pedosphere 20:236–244
CAS
Article
Google Scholar
Zhang XX, Wu PF, Chen B (2010b) Relationship between vegetation greenness and urban heat island effect in Beijing City of China. Procedia Environ Sci 2:1438–1450
Article
Google Scholar
Zhang M (2004) Phosphorus accumulation in soils along an urban–rural land use gradient in Hangzhou, southeast China. Commun Soil Sci Plant Anal 35:819–833
CAS
Article
Google Scholar
Zhao J (2010) Species composition and spatial distribution of urban plants within the built-up areas of Beijing, China. PHD.
Zhao J, Ouyang Z, Zheng H, Zhou W, Wang X, Xu W et al (2010) Plant species composition in green spaces within the built-up areas of Beijing, China. Plant Ecol 209:179–179
Article
Google Scholar
Zhao YG, Zhang GL, Zepp H, Yang JL (2007) Establishing a spatial grouping base for surface soil properties along urban–rural gradient—A case study in Nanjing, China. CATENA 69:74–81
Article
Google Scholar
Zheng WJ, Fu LG (1978) Flora of China (Vol. 7). Beijing: Science Press 321–329 (in Chinese).
Zhu WX, Carreiro MM (1999) Chemoautotrophic nitrification in acidic forest soils along an urban-to-rural transect. Soil Biol Biochem 31:1091–1100
CAS
Article
Google Scholar
Zhu WX, Carreiro MM (2004) Temporal and spatial variations in nitrogen transformations in deciduous forest ecosystems along an urban–rural gradient. Soil Biol Biochem 36:267–278
CAS
Article
Google Scholar