Skip to main content

Advertisement

Log in

The use of geotechnologies for the identification of the urban flora in the city of Teresina, Brazil

  • Published:
Urban Ecosystems Aims and scope Submit manuscript

Abstract

Urban greenness is an element of vital importance for the population quality of life, and forest inventory is considered the most appropriate method for its assessment. Remote sensing has become an attractive alternative for the accomplishment of forest inventory, facilitating urban flora mapping. The present study aimed to identify the main species of trees in Teresina, Piauí, and evaluate the botanical identification accuracy by using high-resolution satellite images (Worldview-2) as compared to on-site inventory. We used the e-Cognition 8.7 software for the mapping, segmentation, and classification of the vegetal species and ERDAS Imagine 9.2 for accuracy verification. The NDVI (Normalized Difference Vegetation Index) was used to analyze the natural vegetation condition. The outskirts of the city presented higher values of NDVI. An amount of 1,392 individuals from 53 species and 28 families, were identified. Among these, the families Anacardiaceae (20.7%), Fabaceae (19.8%), Meliaceae (9.4%), Myrtaceae (6.9%), Arecaceae (6.1%), and Combretaceae (5.5%) were the most prevalent. Amongst the 53 species identified, the 16 most abundant were chosen for the analysis. The classification had a satisfactory result for the 16 vegetal species with a general classification accuracy of 69.43% and a kappa agreement index of 0,68. The species that obtained the highest accuracy were Ficus benjamin (87,5%), Terminalia cattapa (83,3%), Syzygium malaccense (82,4%), Mangifera indica (76,8%), Caesalpinia ferrea (75,9%), Pachira aquatica (73,9%), and Tabebuia sp (75,9%). The results showed that it is feasible, although challenging, to classify biodiverse vegetation in an urban environment using high-resolution satellite images. Our findings support the use of geotechnologies for inventorying urban forest in tropical cities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and material

The data obtained in this Research, can be made available as a scientific article in this journal of scientific importance—Urban ecosystems.

Code availability

The software used in this Research was obtained due to a partnership with the Ashoka Trust for Research in Ecology and the Environment, Bangalore, India.

References

  • Agarwal S, Vailshery LS, Jaganmohan M, Nagendra H (2013) Mapping Urban Tree Species Using Very High Resolution Satellite Imagery: Comparing Pixel-Based and Object-Based Approaches. ISPRS Int J Geo-Inf 2:220–236

    Article  Google Scholar 

  • Aguilar MDCM, Maya JOM (2010) Las áreas verdes de la ciudad de México: un reto actual. Scripta Nova Revista Electrónica de Geografía y Ciencias Sociales 331(56):1–10

  • Almeida AS, Werneck GL, Resendes AP (2014) Object-oriented remote sensing image classification in epidemiological studies of visceral leishmaniasis in urban areas. Cad Saude Publica 30(8):1639–1653. https://doi.org/10.1590/0102-311x00059414

    Article  PubMed  Google Scholar 

  • Alonzo M, Roth K, Roberts D (2013) Identifying Santa Barbara’s urban tree species from AVIRIS imagery using canonical discriminant analysis. Remote Sens Lett 4(5):513–521

    Article  Google Scholar 

  • Amorim A (2010) Etnobiologia da Comunidade de Pescadores Artesanais Urbanos do Bairro Poti Velho, Teresina/PI, Brasil. In: Lopes, W.G.R. et al. (Orgs.). Cerrado piauiense: uma visão multidisciplinar, EDUFPI, Série Desenvolvimento e Meio Ambiente, Teresina/PI

  • Andrade VRO (2003) Antônio Lemos e as obras de melhoramentos urbanos em Belém: a Praça da República como estudo de caso. Rio de Janeiro, 223f. Dissertação (Mestrado em Arquitetura) - Universidade Federal do Rio de Janeiro

  • Andreatta TR, Backes FAAL, Bellé RA, Neuhaus M, Girardi LB, Schwab NT, Brandão BS (2011) Análise da arborização no contexto urbano de avenidas de Santa Maria, RS. Revista Da Sociedade Brasileira De Arborização Urbana, Piracicaba 6(1):36–50

    Article  Google Scholar 

  • Antunes AFB, Lingnau C, Centeno JAS (2003) Object oriented analysis and semantic network for high resolution image classification. Boletim de Ciências Geodésicas 9(2):1982–2170

  • Ardila J, Bijker W, Tolpekin V, Stein A (2012) Multitemporal change detection of urban trees using localized region - based active contours in VHR images. Remote Sens Environ 124:413–426

    Article  Google Scholar 

  • Barbosa RP, Portela MGT, Machado RRB, Sá AS (2015) Arborização da Avenida Deputado Ulisses Guimarães, bairro Promorar, zona sul de Teresina – PI. REVSBAU, Piracicaba – SP 10(2):78–89

  • Basso JM, Corrêa RS (2014) Arborização urbana e qualificação da paisagem. Paisagem e Ambiente: Ensaios 34:129–148

    Article  Google Scholar 

  • Benz UC, Hofmann P, Willhauck G, Lingenfelder I, Heynen M (2004) Multi-resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information. ISPRS J Photogramm Remote Sens 58(3–4):239–258. https://doi.org/10.1016/j.isprsjprs.2003.10.002

    Article  Google Scholar 

  • Bhavana BL, Sridevi N, Hebbar R (2018) Tree Crown Detection and Extraction from High Resolution Satellite Images in an Urban Area. 2018 International Conference on Design Innovations for 3Cs Compute Communicate Control (ICDI3C). https://doi.org/10.1109/icdi3c.2018.00011

  • Blaschke T (2010) Object based image analysis for remotesensing. ISPRS J Photogramm 65:2–16

    Article  Google Scholar 

  • Blaschke T, Strobl J (2001) What’s Wrong with Pixels? Some Recent Developments Interfacing Remote Sensing and GIS. Zeitschrift Fur Geoinformationssysteme 14(6):12–17

    Google Scholar 

  • Borelli S, Conigliaro M, Pineda F (2018) Urban forests in the global context. Unasylva 69:3–10

    Google Scholar 

  • Breuste J, Qureshi S, Li J (2013) Scaling down the ecosystem services at local level for urban parks of three megacities. Hercynia 46:1–20

    Google Scholar 

  • Chance CM, Coops NC, Plowright AA, Tooke TR, Christen A, Aven N (2016) Invasive Shrub Mapping in 426an Urban Environment from Hyperspectral and LiDAR-Derived Attributes. Front Plant Sci 7:1528. https://doi.org/10.3389/fpls.2016.01528

    Article  PubMed  PubMed Central  Google Scholar 

  • De Aandrade Junior AS, Bastos EA, Silva CO, Gomes AAN, Figueredo Júnior LGM (2004) Atlas climatológico do Estado do Piauí. Embrapa Meio- Norte-Documentos (INFOTECA-E)

  • Freeman MP, Stow D, Roberts D (2016) Object-based Image Mapping of Conifer Tree Mortality in San Diego County based on Multitemporal Aerial Ortho-imagery. Photogramm Eng Rem Sens 82(7):571–580. https://doi.org/10.14358/pers.82.7.571

  • Hartling S, Sagan V, Sidike P, Maimaitijiang M, Carron J (2019) Urban Tree Species Classification Using a WorldView-2/3 and LiDAR Data Fusion Approach and Deep Learning. Sensors 19:1284

    Article  Google Scholar 

  • INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA (2010) Indicadores de desenvolvimento 452sustentável: Brasil 2010. IBGE, ISBN 8524041331.

  • Keniger LE, Gaston KJ, Irvine KN, Fuller RA (2013) What are the Benefits of Interacting with Nature? Int J Environ Res Public Health 10:913–935. https://doi.org/10.3390/ijerph10030913

    Article  PubMed  PubMed Central  Google Scholar 

  • Landis JRE, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 455 33(1):159–174

  • Liu L, Coops NC, Aven NW, Pang Y (2017) Mapping urban tree species using integrated airborne hyperspectral and LiDAR remote sensing data. Remote Sens Environ 200:170–182. https://doi.org/10.1016/j.rse.2017.08.010

    Article  Google Scholar 

  • Lorenzi H (2002) Árvores brasileiras: manual de identificação e cultivo de plantas arbóreas nativas do Brasil (vol 1, 4th edn) Nova Odessa: Editora Plantarum p 384

  • Machado RBB, Meunier IMJ, Silva AJA, Castro AAJF (2006) Árvores nativas para a arborização de Teresina/PI. Revista Da Sociedade Brasileira De Arborização Urbana, Piracicaba 1(1):10–18

    Article  Google Scholar 

  • Machado RRB, Pereira ECG, Andrade LHC (2010) Evolução temporal (2000- 2006) da cobertura vegetal na zona urbana do município de Teresina – Piauí – Brasil. REVSBAU. Piracicaba, SP 5(3):97–112

  • McDonald R (2009) Ecosystem service demand and supply along the urban to rural gradient. Journal of Conservation Planning 5:1–14

    Google Scholar 

  • Moraes LA, Machado RRB (2014) A arborização urbana do município de Timon/MA: inventário, diversidade e diagnóstico quali-quantitativo. REVSBAU, Piracicaba – SP 9(4):80–98

  • Noor NM, Abdullah A, Hashim M (2018) Remote sensing UAV/drones and its applications for urban areas: a review. IOP Conf. Ser.: Earth Environ Sci 169:012003

  • Oldfield EE, Warren RJ, Felson AJ, Bradford MA (2013) Challenges and future directions in urban afforestation. J Appl Ecol. https://doi.org/10.1111/1365-2664.12124

  • Pinheiro CR, de Souza DD (2017) A IMPORTÂNCIA DA ARBORIZAÇÃO 493NAS CIDADES E SUA INFLUÊNCIA NO MICROCLIMA. Revista Gestão & Sustentabilidade Ambiental, [S.l.] 6(1):67–82

  • Poznanovic AJ, Falkowski MJ, Maclean AL, Smith AMS, Evans JS (2014) An Accuracy Assessment of Tree Detection Algorithms in Juniper Woodlands. Photogramm Eng Remote Sens 80(7):627–637. https://doi.org/10.14358/pers.80.7.627

    Article  Google Scholar 

  • Præstholm S, Jensen FS, Hasler B, Damgaard C, Erichsen E (2002) Forests improve qualities and values of local areas in Denmark. Urban For Urban Green 1(2):97–106. https://doi.org/10.1078/1618-8667-00010

    Article  Google Scholar 

  • Pu R, Landry S (2012) A comparative analysis of high spatial resolution IKONOS and WorldView-2 imagery for mapping urban tree species. Remote Sens Environ 124:516–533. https://doi.org/10.1016/j.rse.2012.06.011

    Article  Google Scholar 

  • Shojanoori R, Shafri HZM, Mansor S, Ismail MH (2016) The use of WorldView-2 satellite data in urban tree species mapping by object-based image analysis technique. Sains Malaysiana 45(7):1025–1034

    Google Scholar 

  • Silva AG, Gonçalves W (2012) Inventário e Diagnóstico da Arborização da Cidade de Cajuri, MG. Enciclopédia Biosfera, Centro Científico Conhecer, Goiânia 8(15):1102–1113

    Google Scholar 

  • Silva KAR, Leles PS, Giácomo RG, Mendonça BAF (2016) Diagnóstico e uso de geoprocessamento para manejo da arborização urbana do bairro Centro da cidade do Rio de Janeiro – RJ. Revista Da Sociedade Brasileira De Arborização Urbana, Piracicaba, SP 11(4):98–114

    Article  Google Scholar 

  • Smith AMS, Strand EK, Steele CM, Hann DB, Garrity SR, Falkowski MJ, Evans JS (2008) Production of vegetation spatial-structure maps by per-object analysis of juniper encroachment in multitemporal aerial photographs. Can J Remote Sens 34(S2):S268–S285

    Article  Google Scholar 

  • Szklo M, Nieto FJ (2014) Epidemiology: beyond the basics (3rd edn). Burlington: Jones & Bartlett

  • Su Y, Guo Q, Jin S, Guan H, Sun X, Ma Q, Hu T, Wang R, Li Y (2020) The Development and Evaluation of a Backpack LiDAR System for Accurate and Efficient Forest Inventory. IEEE Geosci Remote Sens Lett. https://doi.org/10.1109/LGRS.2020.3005166

    Article  Google Scholar 

  • Tischer JC, Forte AR, Pedroso-de-moraes C (2014) Análise qualiquantitativa de indivíduos arbóreos 522das praças centrais do município de Leme, SP. Revista Da Sociedade Brasileira De Arborização Urbana, Piracicaba 9(3):49–64

    Article  Google Scholar 

  • Wang K, Wang T, Liu X (2019) A Review: Individual Tree Species Classification Using Integrated Airborne LiDAR and Optical Imagery with a Focus on the Urban Environment. Forests 10:1

    Article  Google Scholar 

  • Zhang K, Hu B (2012) Individual Urban Tree Species Classification Using Very High Spatial Resolution Airborne Multi-Spectral Imagery Using Longitudinal Profiles. Remote Sensing 4:1741–1757

    Article  Google Scholar 

  • Zhu H, Cai L, Liu H, Huang W (2016) Information Extraction of High Resolution Remote Sensing Images Based on the Calculation of Optimal Segmentation Parameters. PLoS ONE 11(6):e0158585. https://doi.org/10.1371/journal.pone.0158585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The author thanks the Federal Institute of Piauí, Federal University of Piauí and Capes and for the support granted to research

Funding

This research was funded by the Ministry of Health of Brazil, with protocol nº 293/2013. This research was the starting point of a study between urban plants x phlebotominios association, where the main point was to know if leishmaniasis disease is associated with vegetation. For this purpose, high resolution satellite images were also used to identify urban plants.

Author information

Authors and Affiliations

Authors

Contributions

MRM: Acquisition of data, Analysis and interpretation of data, Drafting the manuscript or revising it critically for important intellectual content; SA: Analysis and interpretation of data, Drafting the manuscript or revising it critically for important intellectual content; LHGML: Acquisition of data, Drafting the manuscript or revising it critically for important intellectual content; MRAS: Acquisition of data, Drafting the manuscript or revising it critically for important intellectual content; DBSB: Acquisition of data, Drafting the manuscript or revising it critically for important intellectual content; VCS: Acquisition of data, Drafting the manuscript or revising it critically for important intellectual content; GLW: Analysis and interpretation of data, Drafting the manuscript or revising it critically for important intellectual content; CHNC: Conception and design of the study, Analysis and interpretation of data, Drafting the manuscript or revising it critically for important intellectual content.

Corresponding authors

Correspondence to Marcelo Ribeiro Mesquita or Carlos Henrique Nery Costa.

Ethics declarations

Ethics approval and consent to participate

This research did not require specific approval of the study by the appropriate ethics committee for research involving humans and / or animals, nor informed consent, as humans or animals were not used.

Consent for publication

All researchers authorize the publication of this paper in this journal.

Conflicts of interest/Competing interests

The authors declare they have no financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mesquita, M.R., Agarwal, S., de Morais Lima, L.H.G. et al. The use of geotechnologies for the identification of the urban flora in the city of Teresina, Brazil. Urban Ecosyst 25, 523–534 (2022). https://doi.org/10.1007/s11252-021-01153-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11252-021-01153-z

Keywords

Profiles

  1. Carlos Henrique Nery Costa