Mismatching streetscapes: Woody plant composition across a Neotropical city

Abstract

With the establishment and expansion of urban areas, many plants are lost, while some are gained. Understanding plant species richness and composition in cities, including planted elements along streetscapes, is a priority for urban vegetation management and biodiversity conservation. In this study, we assessed the compositional dissimilarity of street trees and shrubs (namely woody vegetation) in the Neotropical city of Xalapa (Mexico) through a citywide sampling scheme. We also evaluated potential relationships between woody vegetation compositional dissimilarity among survey sites considering the distance between them (which is the inverse equivalent of distance decay in studies focused on similarity). For this, we calculated pairwise compositional values using the partitioned Sørensen dissimilarity index (βsor), which allows accounting for the turnover (βsim) and nestedness (βsne) components of the observed dissimilarities. To assess potential distance increases in dissimilarity, we used generalized linear models. Results from our citywide survey show that βsor values were high, indicating that planted woody species composition on streetscapes was heterogeneous and mainly driven by species turnover. Additionally, woody vegetation composition showed a weak increase in dissimilarity with increasing distances between survey sites. Altogether, our findings show that the dissimilarity of woody vegetation along the streetscapes of Xalapa does not follow any particular spatial pattern, which is not in agreement with previous evidence reported in the literature. These findings reflect the impact and role that citizens and local authorities play on the configuration of the street tree and shrub species composition by species selection, planting, and care.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Aronson MFJ, La Sorte FA, Nilon CH et al (2014) A global analysis of the impacts of urbanization on bird and plant diversity reveals key anthropogenic drivers. Proc R Soc B Biol Sci 281:20133330–20133330. https://doi.org/10.1098/rspb.2013.3330

    Article  Google Scholar 

  2. Avolio ML, Pataki DE, Trammell TL, Endter-Wada J (2018) Biodiverse cities: the nursery industry, homeowners, and neighborhood differences drive urban tree composition. Ecol Monogr 88:1–18

    Article  Google Scholar 

  3. Baselga A (2010) Partitioning the turnover and nestedness components of beta diversity. Glob Ecol Biogeogr 19:134–143. https://doi.org/10.1111/j.1466-8238.2009.00490.x

    Article  Google Scholar 

  4. Baselga A, Leprieur F (2015) Comparing methods to separate components of beta diversity. Methods Ecol Evol 6:1069–1079. https://doi.org/10.1111/2041-210X.12388

    Article  Google Scholar 

  5. Baselga A, Orme CDL (2012) Betapart: an R package for the study of beta diversity: Betapart package. Methods Ecol Evol 3:808–812. https://doi.org/10.1111/j.2041-210X.2012.00224.x

    Article  Google Scholar 

  6. Baselga A, Orme D, Villeger S, et al (2018) Package ‘betapart’: partitioning beta diversity into turnover and nestedness components. https://CRAN.R-project.org/package=betapart

  7. Bonthoux S, Voisin L, Bouché-Pillon S, Chollet S (2019) More than weeds: spontaneous vegetation in streets as a neglected element of urban biodiversity. Landsc Urban Plan 185:163–172. https://doi.org/10.1016/j.landurbplan.2019.02.009

    Article  Google Scholar 

  8. Camacho-Cervantes M, Schondube JE, Castillo A, MacGregor-Fors I (2014) How do people perceive urban trees? Assessing likes and dislikes in relation to the trees of a city. Urban Ecosyst 17:761–773. https://doi.org/10.1007/s11252-014-0343-6

    Article  Google Scholar 

  9. Cârlan I, Haase D, Große-Stoltenberg A, Sandric I (2020) Mapping heat and traffic stress of urban park vegetation based on satellite imagery - A comparison of Bucharest, Romania and Leipzig, Germany. Urban Ecosystems 23:363–377

  10. Castillo-Campos G (1991) Vegetación y flora del municipio de Xalapa, Veracruz. Instituto de Ecología, A.C., MAB UNESCO, H. Ayuntamiento de Xalapa, Veracruz, Xalapa, Veracruz, México

  11. Conway TM, Vander Vecht J (2015) Growing a diverse urban forest: species selection decisions by practitioners planting and supplying trees. Landsc Urban Plan 138:1–10. https://doi.org/10.1016/j.landurbplan.2015.01.007

    Article  Google Scholar 

  12. Crawley MJ (2013) The R book, 2nd edn. Wiley, Chichester

    Google Scholar 

  13. Dahlsten DL, Rowney DL, Tait SM (1994) Development of integrated pest management programs in urban forests: the elm leaf beetle (Xanthogaleruca luteola (Müller)) in California, USA. For Ecol Manag 65:31–44

    Article  Google Scholar 

  14. de Vaus D (2002) Analyzing social science data: 50 key problems in data analysis. SAGE, Great Britain

  15. Dobbs C, Kendal D, Nitschke C (2013) The effects of land tenure and land use on the urban forest structure and composition of Melbourne. Urban For Urban Green 12:417–425. https://doi.org/10.1016/j.ufug.2013.06.006

    Article  Google Scholar 

  16. Dobbs C, Escobedo FJ, Clerici N et al (2019) Urban ecosystem services in Latin America: mismatch between global concepts and regional realities? Urban Ecosyst 22:173–187. https://doi.org/10.1007/s11252-018-0805-3

    Article  Google Scholar 

  17. Dolan RW (2015) Two hundred years of forest change: effects of urbanization on tree species composition and structure. Arboricult Urban For 41:136–145

    Google Scholar 

  18. Dunn PK (2017) Package ‘tweedie’. R package version 2.3.2. https://cran.r-project.org/web/packages/tweedie/index.html

  19. Dunn PK, Smyth GK (2005) Series evaluation of Tweedie exponential dispersion model densities. Stat Comput 15:267–280. https://doi.org/10.1007/s11222-005-4070-y

    Article  Google Scholar 

  20. Dwyer JF, Nowak DJ, Noble MH, Sisinni SM (2000) Connecting people with ecosystems in the 21st century: an assessment of our nation’s urban forests. Department of Agriculture, Forest Service, Pacific northwest Research Station., Portland, Oregon, U.S

  21. Eldredge N, Horenstein S (2014) Concrete jungle: new York City and our last best hope for a sustainable future. University of California Press, Berkeley

    Book  Google Scholar 

  22. Escobedo FJ, Kroeger T, Wagner JE (2011) Urban forests and pollution mitigation: analyzing ecosystem services and disservices. Environ Pollut 159:2078–2087. https://doi.org/10.1016/j.envpol.2011.01.010

    CAS  Article  Google Scholar 

  23. Evers CR, Wardropper CB, Branoff B et al (2018) The ecosystem services and biodiversity of novel ecosystems: a literature review. Glob Ecol Conserv 13:e00362. https://doi.org/10.1016/j.gecco.2017.e00362

    Article  Google Scholar 

  24. Falfán I, MacGregor-Fors I (2016) Woody neotropical streetscapes: a case study of tree and shrub species richness and composition in Xalapa. Madera Bosques 22:95–110

    Google Scholar 

  25. Falfán I, Muñoz-Robles CA, Bonilla-Moheno M, MacGregor-Fors I (2018) Can you really see ‘green’? Assessing physical and self-reported measurements of urban greenery. Urban For Urban Green 36:13–21. https://doi.org/10.1016/j.ufug.2018.08.016

    Article  Google Scholar 

  26. Fauth JE, Bernardo J, Camara M et al (1996) Simplifying the jargon of community ecology: a conceptual approach. Am Nat 147:281–286

    Article  Google Scholar 

  27. Forman RTT (2014) Urban ecology: science of cities. Cambridge University Press, New York

    Google Scholar 

  28. García-Campos HM (1993) Las áreas verdes públicas de Xalapa. In: López-Moreno IR (ed) Ecología urbana aplicada a la ciudad de Xalapa. Instituto de Ecología, A.C., MAB UNESCO, H. Ayuntamiento de Xalapa, Veracruz, Xalapa, Veracruz, México, pp 99–132

  29. Gerstenberg T, Hofmann M (2016) Perception and preference of trees: a psychological contribution to tree species selection in urban areas. Urban For Urban Green 15:103–111. https://doi.org/10.1016/j.ufug.2015.12.004

    Article  Google Scholar 

  30. Gong C, Chen J, Yu S (2013) Biotic homogenization and differentiation of the flora in artificial and near-natural habitats across urban green spaces. Landsc Urban Plan 120:158–169. https://doi.org/10.1016/j.landurbplan.2013.08.006

    Article  Google Scholar 

  31. Haase D, Jänicke C, Wellmann T (2019) Front and back yard green analysis with subpixel vegetation fractions from earth observation data in a city. Landsc Urban Plan 182:44–54. https://doi.org/10.1016/j.landurbplan.2018.10.010

    Article  Google Scholar 

  32. Hunter MCR, Brown DG (2012) Spatial contagion: gardening along the street in residential neighborhoods. Landsc Urban Plan 105:407–416. https://doi.org/10.1016/j.landurbplan.2012.01.013

    Article  Google Scholar 

  33. INEGI (Instituto Nacional de Estadística, Geografía) (2009) Prontuario de información geográfica municipal de los Estados Unidos Mexicanos-Xalapa, Veracruz de Ignacio de la Llave-Clave geoestadística 30087

  34. INEGI (Instituto Nacional de Estadística y Geografía) (2010) Censo de Población y Vivienda 2010. Microdatos para Veracruz de Ignacio de la Llave. In: Inst. Nac. Estad. Geogr. http://www.beta.inegi.org.mx/proyectos/ccpv/2010/. Accessed 4 Mar 2016

  35. Jenerette GD, Clarke LW, Avolio ML et al (2016) Climate tolerances and trait choices shape continental patterns of urban tree biodiversity: toward a macroecology of urban trees. Glob Ecol Biogeogr 25:1367–1376. https://doi.org/10.1111/geb.12499

    Article  Google Scholar 

  36. Jim CY (1988) Street tree study as a theme in urban biogeography. Geography 73:226–232

    Google Scholar 

  37. Jim CY, Chen WY (2008) Pattern and divergence of tree communities in Taipei’s main urban green spaces. Landsc Urban Plan 84:312–323. https://doi.org/10.1016/j.landurbplan.2007.09.001

    Article  Google Scholar 

  38. Jim CY, Chen WY (2009) Ecosystem services and valuation of urban forests in China. Cities 26:187–194. https://doi.org/10.1016/j.cities.2009.03.003

    Article  Google Scholar 

  39. Kara B (2012) Assessment of the distribution and diversity of street tree species in Aydin, Turkey. J Food Agric Environ 10:919–928

    Google Scholar 

  40. Kendal D, Williams NSG, Williams KJH (2012) Drivers of diversity and tree cover in gardens, parks and streetscapes in an Australian city. Urban For Urban Green 11:257–265. https://doi.org/10.1016/j.ufug.2012.03.005

    Article  Google Scholar 

  41. Kirkpatrick JB, Davison A, Daniels GD (2012) Resident attitudes towards trees influence the planting and removal of different types of trees in eastern Australian cities. Landsc Urban Plan 107:147–158. https://doi.org/10.1016/j.landurbplan.2012.05.015

    Article  Google Scholar 

  42. Köchli DA, Brang P (2005) Simulating effects of forest management on selected public forest goods and services: a case study. For Ecol Manag 209:57–68. https://doi.org/10.1016/j.foreco.2005.01.009

    Article  Google Scholar 

  43. Koleff P, Gaston KJ, Lennon JJ (2003) Measuring beta diversity for presence–absence data. J Anim Ecol 72:367–382

    Article  Google Scholar 

  44. Kowarik I, Lippe M, Cierjacks A (2013) Prevalence of alien versus native species of woody plants in Berlin differs between habitats and at different scales. Preslia 85:113–132

    Google Scholar 

  45. Kuruneri-Chitepo C, Shackleton CM (2011) The distribution, abundance and composition of street trees in selected towns of the eastern cape, South Africa. Urban For Urban Green 10:247–254. https://doi.org/10.1016/j.ufug.2011.06.001

    Article  Google Scholar 

  46. Lanner J, Kratschmer S, Petrović B, Gaulhofer F, Meimberg H, Pachinger B (2020) City dwelling wild bees: how communal gardens promote species richness. Urban Ecosystems 23:271–288

  47. La Sorte FA, McKinney ML (2006) Compositional similarity and the distribution of geographical range size for assemblages of native and non-native species in urban floras. Divers Distrib 12:679–686. https://doi.org/10.1111/j.1366-9516.2006.00276.x

    Article  Google Scholar 

  48. La Sorte FA, McKinney ML, Pyšek P (2007) Compositional similarity among urban floras within and across continents: biogeographical consequences of human-mediated biotic interchange: intercontinental compositional similarity. Glob Chang Biol 13:913–921. https://doi.org/10.1111/j.1365-2486.2007.01329.x

    Article  Google Scholar 

  49. La Sorte FA, McKinney ML, Pyšek P et al (2008) Distance decay of similarity among European urban floras: the impact of anthropogenic activities on β diversity. Glob Ecol Biogeogr 17:363–371. https://doi.org/10.1111/j.1466-8238.2007.00369.x

    Article  Google Scholar 

  50. Lemoine-Rodríguez R, MacGregor-Fors I, Muñoz-Robles C (2019) Six decades of urban green change in a neotropical city: a case study of Xalapa, Veracruz, Mexico. Urban Ecosyst 22:609–618. https://doi.org/10.1007/s11252-019-00839-9

    Article  Google Scholar 

  51. Li YY, Wang XR, Huang CL (2011) Key street tree species selection in urban areas. Afr J Agric Res 6:3539–3550

    Google Scholar 

  52. Lockwood B, Berland A (2019) Socioeconomic factors associated with increasing street tree density and diversity in Central Indianapolis. Cities Environ 12:6

    Google Scholar 

  53. Lososová Z, Chytrý M, Tichý L et al (2012) Biotic homogenization of central European urban floras depends on residence time of alien species and habitat types. Biol Conserv 145:179–184. https://doi.org/10.1016/j.biocon.2011.11.003

    Article  Google Scholar 

  54. Lyytimäki J, Sipilä M (2009) Hopping on one leg – the challenge of ecosystem disservices for urban green management. Urban For Urban Green 8:309–315. https://doi.org/10.1016/j.ufug.2009.09.003

    Article  Google Scholar 

  55. MacGregor-Fors I (2010) How to measure the urban-wildland ecotone: redefining ‘peri-urban’ areas. Ecol Res 25:883–887. https://doi.org/10.1007/s11284-010-0717-z

    Article  Google Scholar 

  56. MacGregor-Fors I (2019) De mitos a hitos urbanos: ¿cómo hacer ecología en selvas de asfalto? In: Zuria I, Olvera-Ramírez AM, Ramírez Bastida P (eds) Manual de técnicas para el estudio de fauna nativa en ambientes urbanos. REFAMA, Universidad Autónoma de Querétaro, Querétaro, México, pp 19–38

  57. McBride J (2017) The world’s urban forests: history, composition, design, function and management. Springer International Publishing, Switzerland

  58. McConnachie MM, Shackleton CM (2010) Public green space inequality in small towns in South Africa. Habitat Int 34:244–248. https://doi.org/10.1016/j.habitatint.2009.09.009

    Article  Google Scholar 

  59. McCullough DG, Mercader RJ (2012) Evaluation of potential strategies to SLow ash mortality (SLAM) caused by emerald ash borer (Agrilus planipennis): SLAM in an urban forest. Int J Pest Manag 58:9–23. https://doi.org/10.1080/09670874.2011.637138

    CAS  Article  Google Scholar 

  60. McDonnell MJ, MacGregor-Fors I (2016) The ecological future of cities. Science 352:936–938

    CAS  Article  Google Scholar 

  61. McKinney ML (2006) Urbanization as a major cause of biotic homogenization. Biol Conserv 127:247–260. https://doi.org/10.1016/j.biocon.2005.09.005

    Article  Google Scholar 

  62. McPherson EG, Ferrini F (2010) Trees are good, but. Arborist News 19:58–60

  63. Mullaney J, Lucke T, Trueman SJ (2015) A review of benefits and challenges in growing street trees in paved urban environments. Landsc Urban Plan 134:157–166. https://doi.org/10.1016/j.landurbplan.2014.10.013

    Article  Google Scholar 

  64. Nagendra H, Gopal D (2010) Street trees in Bangalore: density, diversity, composition and distribution. Urban For Urban Green 9:129–137. https://doi.org/10.1016/j.ufug.2009.12.005

    Article  Google Scholar 

  65. Nekola JC, White PS (1999) The distance decay of similarity in biogeography and ecology. J Biogeogr 26:867–878

    Article  Google Scholar 

  66. Nowak DJ, McBride JR, Beatty RA (1990) Newly planted street tree growth and mortality. J Arboric 16:124–129

    Google Scholar 

  67. Núñez-Florez R, Pérez-Gómez U, Fernández-Méndez F (2019) Functional diversity criteria for selecting urban trees. Urban For Urban Green 38:251–266. https://doi.org/10.1016/j.ufug.2019.01.005

    Article  Google Scholar 

  68. Olivero-Lora S, Meléndez-Ackerman E, Santiago L et al (2020) Attitudes toward residential trees and awareness of tree services and disservices in a tropical city. Sustainability 12:117. https://doi.org/10.3390/su12010117

    Article  Google Scholar 

  69. Ordóñez Barona C, Devisscher T, Dobbs C et al (2020) Trends in urban forestry research in Latin America & the Caribbean: a systematic literature review and synthesis. Urban For Urban Green 47:126544. https://doi.org/10.1016/j.ufug.2019.126544

    Article  Google Scholar 

  70. Orellana O, Carrillo L, Franco V (2001) Árboles recomendados para la ciudad de Mérida. La naturaleza como parte del contexto urbano. Jardín Botánico Regional, Ayuntamiento de Mérida, PNUD, FMAM, CICY, Mérida, Yucatán, México

  71. Parris KM, Amati M, Bekessy SA et al (2018) The seven lamps of planning for biodiversity in the city. Cities 83:44–53. https://doi.org/10.1016/j.cities.2018.06.007

    Article  Google Scholar 

  72. Pauleit S (2003) Urban street tree plantings: identifying the key requirements. Proc ICE-Munic Eng 156:43–50

    Article  Google Scholar 

  73. Pearse WD, Cavender-Bares J, Hobbie SE et al (2018) Homogenization of plant diversity, composition, and structure in north American urban yards. Ecosphere 9:e02105. https://doi.org/10.1002/ecs2.2105

    Article  Google Scholar 

  74. Petri AC, Koeser AK, Lovell ST, Ingram D (2016) How green are trees? — using life cycle assessment methods to assess net environmental benefits. J Environ Hortic 34:101–110

    CAS  Article  Google Scholar 

  75. Podani J, Schmera D (2011) A new conceptual and methodological framework for exploring and explaining patterns in presence-absence data. Oikos 120:1625–1638

    Article  Google Scholar 

  76. Pregitzer CC, Charlop-Powers S, Bibbo S et al (2019) A city-scale assessment reveals that native forest types and overstory species dominate new York City forests. Ecol Appl 29:e01819. https://doi.org/10.1002/eap.1819

    Article  PubMed  PubMed Central  Google Scholar 

  77. Pun-Cheng LSC (2017) Distance decay. In: Richardson D, Castree N, Goodchild M et al (eds) International encyclopedia of geography: people, the earth, environment, and technology. John Wiley & Sons, Hoboken, pp 1–5

    Google Scholar 

  78. Qian S, Qi M, Huang L et al (2016) Biotic homogenization of China’s urban greening: a meta-analysis on woody species. Urban For Urban Green 18:25–33. https://doi.org/10.1016/j.ufug.2016.05.002

    Article  Google Scholar 

  79. R Core Team (2018) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

  80. Ramage BS, Roman LA, Dukes JS (2013) Relationships between urban tree communities and the biomes in which they reside. Appl Veg Sci 16:8–20

    Article  Google Scholar 

  81. Raup DM, Crick RE (1979) Measurement of faunal similarity in paleontology. J Paleontol 53:1213–1227

    Google Scholar 

  82. Roman LA, Scatena FN (2011) Street tree survival rates: meta-analysis of previous studies and application to a field survey in Philadelphia, PA, USA. Urban For Urban Green 10:269–274. https://doi.org/10.1016/j.ufug.2011.05.008

    Article  Google Scholar 

  83. Roman LA, Battles JJ, McBride JR (2014) Determinants of establishment survival for residential trees in Sacramento County, CA. Landsc Urban Plan 129:22–31. https://doi.org/10.1016/j.landurbplan.2014.05.004

    Article  Google Scholar 

  84. Roman LA, Battles JJ, McBride JR (2016) Urban tree mortality: a primer on demographic approaches. Department of Agriculture, Forest Service, Northern Research Station, Newtown Square, PA: U.S

  85. Roman LA, Pearsall H, Eisenman TS et al (2018) Human and biophysical legacies shape contemporary urban forests: a literature synthesis. Urban For Urban Green. https://doi.org/10.1016/j.ufug.2018.03.004

  86. Roy S, Byrne J, Pickering C (2012) A systematic quantitative review of urban tree benefits, costs, and assessment methods across cities in different climatic zones. Urban For Urban Green 11:351–363

    Article  Google Scholar 

  87. Santamour FS Jr (2004) Trees for urban planting: diversity uniformity, and common sense. In: Elevitch CR (ed) The overstory book: cultivating connections with trees. Second. Permanent Agriculture Resources, Holualoa, pp 396–399

    Google Scholar 

  88. Säumel I, Weber F, Kowarik I (2016) Toward livable and healthy urban streets: roadside vegetation provides ecosystem services where people live and move. Environ Sci Pol 62:24–33. https://doi.org/10.1016/j.envsci.2015.11.012

    Article  Google Scholar 

  89. Smith IA, Dearborn VK, Hutyra LR (2019) Live fast, die young: accelerated growth, mortality, and turnover in street trees. PLoS One 14:e0215846. https://doi.org/10.1371/journal.pone.0215846

    Article  PubMed  PubMed Central  Google Scholar 

  90. Soares AL, Rego FC, McPherson EG et al (2011) Benefits and costs of street trees in Lisbon, Portugal. Urban For Urban Green 10:69–78. https://doi.org/10.1016/j.ufug.2010.12.001

    Article  Google Scholar 

  91. Soininen J, McDonald R, Hillebrand H (2007) The distance decay of similarity in ecological communities. Ecography 30:3–12. https://doi.org/10.1111/j.2006.0906-7590.04817.x

    Article  Google Scholar 

  92. Soto-Esparza M, Gómez-Columna M (1993) Consideraciones climáticas de la ciudad de Xalapa. In: López-Moreno IR (ed) Ecología urbana aplicada a la ciudad de Xalapa. Instituto de Ecología, A.C., MAB UNESCO, H. Ayuntamiento de Xalapa, Veracruz, Xalapa, Veracruz, México, pp 81–98

  93. Steenberg JWN (2018) People or place? An exploration of social and ecological drivers of urban forest species composition. Urban Ecosyst 21:887–901. https://doi.org/10.1007/s11252-018-0764-8

    Article  Google Scholar 

  94. Steinbauer MJ, Dolos K, Reineking B, Beierkuhnlein C (2012) Current measures for distance decay in similarity of species composition are influenced by study extent and grain size: scale-dependency of distance decay. Glob Ecol Biogeogr 21:1203–1212. https://doi.org/10.1111/j.1466-8238.2012.00772.x

    Article  Google Scholar 

  95. Thomsen P, Bühler O, Kristoffersen P (2016) Diversity of street tree populations in larger Danish municipalities. Urban For Urban Green 15:200–210. https://doi.org/10.1016/j.ufug.2015.12.006

    Article  Google Scholar 

  96. Tobler WR (1970) A computer movie simulating urban growth in the Detroit region. Econ Geogr 46:234. https://doi.org/10.2307/143141

    Article  Google Scholar 

  97. Turner WR (2003) Citywide biological monitoring as a tool for ecology and conservation in urban landscapes: the case of the Tucson bird count. Landsc Urban Plan 65:149–166. https://doi.org/10.1016/S0169-2046(03)00012-4

    Article  Google Scholar 

  98. Tyrväinen L, Pauleit S, Seeland K, de Vries S (2005) Benefits and uses of urban forests and trees. In: Konijnendijk CC, Nilsson K, Randrup TB, Schipperijn J (eds) Urban forests and trees. A reference book. Springer, The Netherlands, pp 81–114

  99. Viippola V, Whitlow TH, Zhao W et al (2018) The effects of trees on air pollutant levels in peri-urban near-road environments. Urban For Urban Green 30:62–71. https://doi.org/10.1016/j.ufug.2018.01.014

    Article  Google Scholar 

  100. Vila-Ruiz CP, Meléndez-Ackerman E, Santiago-Bartolomei R et al (2014) Plant species richness and abundance in residential yards across a tropical watershed: implications for urban sustainability. Ecol Soc 19:22. https://doi.org/10.5751/ES-06164-190322

    Article  Google Scholar 

  101. Wang H, Qiu F (2018) Spatial disparities in neighborhood public tree coverage: do modes of transportation matter? Urban For Urban Green 29:58–67. https://doi.org/10.1016/j.ufug.2017.11.001

    Article  Google Scholar 

  102. Wang H-F, MacGregor-Fors I, López-Pujol J (2012) Warm-temperate, immense, and sprawling: plant diversity drivers in urban Beijing, China. Plant Ecol 213:967–992. https://doi.org/10.1007/s11258-012-0058-9

    Article  Google Scholar 

  103. Wang G, Zuo J, Li X-R et al (2014) Low plant diversity and floristic homogenization in fast-urbanizing towns in Shandong peninsular, China: effects of urban greening at regional scale for ecological engineering. Ecol Eng 64:179–185. https://doi.org/10.1016/j.ecoleng.2013.12.054

    Article  Google Scholar 

  104. Wang H-F, Qureshi S, Knapp S et al (2015) A basic assessment of residential plant diversity and its ecosystem services and disservices in Beijing, China. Appl Geogr 64:121–131. https://doi.org/10.1016/j.apgeog.2015.08.006

    Article  Google Scholar 

  105. Williams NSG, Schwartz MW, Vesk PA et al (2009) A conceptual framework for predicting the effects of urban environments on floras. J Ecol 97:4–9. https://doi.org/10.1111/j.1365-2745.2008.01460.x

    Article  Google Scholar 

  106. Yang J, McBride J, Zhou J, Sun Z (2005) The urban forest in Beijing and its role in air pollution reduction. Urban For Urban Green 3:65–78. https://doi.org/10.1016/j.ufug.2004.09.001

    Article  Google Scholar 

  107. Yang J, La Sorte FA, Pyšek P et al (2015) The compositional similarity of urban forests among the world’s cities is scale dependent: biotic homogenization of urban forests. Glob Ecol Biogeogr 24:1413–1423. https://doi.org/10.1111/geb.12376

    Article  Google Scholar 

  108. Zhu Z-X, Roeder M, Xie J et al (2019) Plant taxonomic richness and phylogenetic diversity across different cities in China. Urban For Urban Green 39:55–66. https://doi.org/10.1016/j.ufug.2019.02.004

    Article  Google Scholar 

  109. Zipperer WC, Sisinni SM, Pouyat RV, Foresman TW (1997) Urban tree cover: an ecological perspective. Urban Ecosyst 1:229–246

    Article  Google Scholar 

  110. Zmyslony J, Gagnon D (1998) Residential management of urban front-yard landscape: a random process? Landsc Urban Plan 40:295–307

    Article  Google Scholar 

Download references

Acknowledgments

We are deeply grateful to Martha Bonilla-Moheno, Carlos A. Muñoz-Robles, Francisco J. Escobedo, Michelle García-Arroyo, Rafael A. Rueda-Hernández, and the three anonymous reviewers for their helpful comments that improved the clarity and quality of our manuscript, as well as Nihaib Flores-Galicia for his assistance in the field and with plant specimens’ identification and Eleanor Diamant for the English grammar revision of the final version. This study was partially funded by the project “Patrones ecológicos y percepción social de la diversidad biológica que habita en la ciudad de Xalapa: Un enfoque multidisciplinario”. IF acknowledges the scholarship and financial support provided by the National Council of Science and Technology (CONACYT, 344590) and to the Doctoral Program of the Instituto de Ecología, A.C. (INECOL).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ian MacGregor-Fors.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Falfán, I., MacGregor-Fors, I. Mismatching streetscapes: Woody plant composition across a Neotropical city. Urban Ecosyst 24, 265–274 (2021). https://doi.org/10.1007/s11252-020-01033-y

Download citation

Keywords

  • Citywide
  • Plant species dissimilarity
  • Species turnover
  • Urban ecology
  • Urban trees