Skip to main content

Advertisement

Log in

Plant-bird mutualistic interactions can contribute to the regeneration of forest and non-forest urban patches in the Brazilian Cerrado

  • Published:
Urban Ecosystems Aims and scope Submit manuscript

Abstract

Birds play a crucial role in plant reproduction, being one of the most important pollinators and seed dispersers among vertebrates. Here, we aim to study plant-bird interactions in the Cerrado biome of Brazil, highlighting existing mutualistic relations and their role in forest regeneration processes. We sampled plants and recorded feeding events and other interactions between frugivorous birds and tree and shrub species in forest and non-forest environments between May 2015 and July 2016. We registered 74 plant species of 36 genera in 23 families, along with 44 bird species, 63.7% of which were frugivores. The rainy season (September-October) offered the highest resource availability for birds, therefore most feeding events and other interactions also occurred during this period. Approximately 64% of the plants observed at the study site had zoochoric dispersal and more than half of them relied on birds. We found a variety of bird species interacting with plants that supplied their food in urban fragments and highlight the relevance of plant-bird interactions to maintaining urban ecosystems. This result demonstrates the importance of maintaining forested environments, as habitat loss reduces ecological interactions, leaving only a few healthy ecological systems as scattered forest fragments within the urban matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Almeida-Neto M, Ulrich W (2011) A straight forward computational approach for measuring nestedness using quantitative matrices. Environ Model Softw 26:173–178. https://doi.org/10.1016/j.envsoft.2010.08.003

    Article  Google Scholar 

  • Aronson MJF, Lepczyk C, Evans KL et al (2017) Biodiversity in the city: Key challenges for urban green space management. Front Ecol Environ 15:189–196. https://doi.org/10.1002/fee.1480

    Article  Google Scholar 

  • Bascompte J, Jordano P (2006) The structure of plant animal mutualistic networks. In: Pascual M, Dunne JA (eds) Ecological networks: linking structure to dynamics in food webs. Oxford University Press, Oxford, pp 143–159

    Google Scholar 

  • Bascompte J, Jordano P, Melían CJ et al (2003) The nested assembly of plant-animal mutualistic networks. Proc Natl Acad Sci 100(16):9383–9387

    Article  CAS  Google Scholar 

  • Bender IMA, Kissling WD, Blendinger G et al (2018) Morphological trait matching shapes plant–frugivore networks across the Andes. Ecography 41:1910–1919. https://doi.org/10.1111/ecog.03396

    Article  Google Scholar 

  • BirdLife International (2020) Species factsheet: Phibalura flavirostris. Downloaded from http://www.birdlife.org on 04/02/2020

  • Camargo R, Boucher-Lalonde V, Currie D (2018) At the landscape level, birds respond strongly to habitat amount but weakly to fragmentation. Divers Distrib. https://doi.org/10.1111/ddi.12706

    Article  Google Scholar 

  • Carlo TA, Yang S (2011) Modelos de rede de frugivoria e dispersão de sementes: desafios e oportunidades. Acta Oecol 37:619–624 (10.1016/j.actao.2011.08.001)

    Article  Google Scholar 

  • Chao A (1987) Estimating the population size for capture-recapture data with unequal catchability. Biometrics 43:783–791

    Article  CAS  Google Scholar 

  • Cheung KC, dos Reis LK, Jesus CCC (2016) Análise fitossociológica de um fragmento de Cerrado em Campo Grande, MS. Multitemas, 21(49)

  • Corral A, Valério LM (2019) Efeito do tamanho e distância de fragmentos florestais urbanos na composição de aves no perímetro urbano de Campo Grande – MS. Atualidades Ornitológicas. Campo Grande 210:33–46

    Google Scholar 

  • Corral A, Silva CLR, Carvalho CME et al (2018) First record of Swallow-tailed Cotinga, Phibalura flavirostris Vieillot, 1816 (Aves, Cotingidae) in Campo Grande, Mato Grosso do Sul, Brazil . CheckList 14:495–497. https://doi.org/10.15560/14.2.495

    Article  Google Scholar 

  • Dennis AJ, Westcott DA (2006) Reducing complexity when studying seed dispersal at community scales: a functional classification of vertebrate seed dispersers in tropical forests. Oecologia 149(4):620–634. https://doi.org/10.1007/s00442-

    Article  PubMed  Google Scholar 

  • Dormann CF, Gruber B, Frund J (2008) Introducing the bipartite package analysing ecological networks . RNews 8:8–11

    Google Scholar 

  • Fadini RF, Marco P (2004) Interações entre aves frugívoras e plantas em um fragmento de mata atlântica de Minas Gerais. Ararajuba, São Paulo 12:97–103

  • Franciso MR, Galetti M (2002) Aves como potenciais dispersores de sementes Ocoteapulchella numa área de vegetação de Cerrado do sudeste brasileiro. Rev Bras Bot 25:11–17

    Article  Google Scholar 

  • Freitas L, Vizentin-Bugoni J, Wolowski M, Souza JMT, de Varassin IG (2014) Interações planta-polinizador ea estruturação das comunidades. In: Biologia da Polinização. Rech (Org) et al. Editora projeto cultural. 1st edn. Rio de Janeiro

  • Githiru M, Lens L, Bennur LA, Ogol CPKO (2002) Effects of site and fruit size on the composition of avian frugivore assemblages in a fragmented Afrotropical forest. Oikos 96:320–330

    Article  Google Scholar 

  • Guimarães PR (2010) A estrutura e dinâmica evolutiva de redes mutualísticas. Ciência e Ambiente 39:137–148

    Google Scholar 

  • Guimarães LD, Silva MAD, Anacleto TC (2006) Natureza viva: Cerrado. Editora da UCG, Goiânia

    Google Scholar 

  • Gwynne JA et al (2010) Aves do Brasil: Pantanal e Cerrado. Editora Horizonte, São Paulo

    Google Scholar 

  • Howe HF, Smallwood J (1982) Ecology of seed dispersal. Annu Rev Ecol Syst 13:201–228

    Article  Google Scholar 

  • Hsieh TC, Ma KH, Chao A (2016) iNEXT: An R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods Ecol Evol (in revision)

  • Jordano P (1987) Patterns of mutualistic interactions in pollination and seed dispersal: connectance, dependence asymmetries, and coevolution. Am Nat 129:657–677

    Article  Google Scholar 

  • Jordano P (1994) Spatial and temporal variation in the avian-frugivore assemblage of Prunus mahaleb: patterns and consequences. Oikos 71:479–471

    Article  Google Scholar 

  • Jordano P, Bascompte J, Olesen JM (2003) Invariant properties in coevolutionary networks of plant–animal interactions. Ecol Lett 6:69–81

    Article  Google Scholar 

  • Jordano P, Bascompte J, Olesen JM (2006) The ecological consequences of complex topology and nested structure in pollination webs. In: Waser NM, Ollerton J (eds) Plant-pollinator interactions: from specialization to generalization. The University of Chicago Press, Chicago, pp 173–199

    Google Scholar 

  • Jordano P, Lambert JE, Forget PM et al (2010) Frugivores and seed dispersal: mechanisms and consequences for biodiversity of a key ecological interaction. Biol Let 7:321–323. https://doi.org/10.1098/rsbl.2010.0986

    Article  Google Scholar 

  • Lasky J, Keitt T (2012) The effect of spatial structure of pasture tree cover on avian frugivores in eastern amazonia. Biotropica 44:489–497. https://doi.org/10.1111/j.1744-7429.2012.00857.x

    Article  Google Scholar 

  • Levey DJ, Moermond TC, Denslow JS (1984) Fruit choice in neotropical birds: The effect of distance between fruits on preference patterns. Ecology 65:844–850. https://doi.org/10.2307/1938058

    Article  Google Scholar 

  • Lorenzi H (2002) Árvores brasileiras: manual de identificação e cultivo de plantas arbóreas nativas do Brasil, 2rd edn. Instituto Plantarum, Nova Odessa

    Google Scholar 

  • Lorenzi H (2009) Árvores brasileiras: manual de identificação e cultivo de plantas arbóreas nativas do Brasil, 3rd edn. Instituto Plantarum, Nova Odessa

    Google Scholar 

  • Macedo RHF (2002) Nos Cerrados do Brasil: ecologia e história natural de uma savana neotropical. Columbia University Press, Nova Iorque

    Google Scholar 

  • Malhães MA (2003) Variação sazonal da dieta e comportamento alimentar de traupídeos (Passeriformes: Emberezidae) em Ibitipoca, Minas Gerais, Brasil. Ararajuba 11:45–55

    Google Scholar 

  • Marjakangas EL, Abrego N, Grotan V et al (2019) Fragmented tropical forests lose mutualistic plant–animal interactions. Divers Distrib 00:1–15. https://doi.org/10.1111/ddi.13010

    Article  Google Scholar 

  • Maruyama PK, Bonizario C, Marcon AP et al (2019) Plant-hummingbird interaction networks in urban areas: Generalization and the importance of trees with specialized flowers as a nectar resource for pollinator conservation. Biol Conserv 230:187–194

    Article  Google Scholar 

  • Melo C, Bento EC, Oliveira PE (2003) Frugivory and dispersal of Faramea cyanea (Rubiaceae) in cerrado woody plant formations. Braz J Biol 63:75–82. https://doi.org/10.1590/S0101-81752008000400013

    Article  CAS  PubMed  Google Scholar 

  • Melo MAR, Muylaert ML, Pinheiro RBP, Ferreira GMF (2016) Guia para análise de redes ecológicas. 1ed. http://www.marcomello.org. Accessed 01 July 2020

  • MMA (2018) Ministério do Meio Ambiente. Reserva Legal. IOP Publishing: <https://www.mma.gov.br/>. Accessed 4 Feb 2020

  • Nunes K (2012) Interações entre aves frugívoras e plantas: um estudo comparativo em formações savânicas e florestais do cerrado. Universidade do Estado de Mato Grosso, Nova Xavantina

    Google Scholar 

  • Olesen JM, Bascompte J, Yoko L et al (2007) The modularity of pollination networks. Proc Natl Acad Sci 104:19891–19896

    Article  CAS  Google Scholar 

  • Oliveira DSF, Franchin AG, Marçal J et al (2015) Bird-plant interaction networks, a study on frugivory in Brazilian urban areas. Biotemas 28:83–97

    Article  Google Scholar 

  • Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’hara RB, Wagner H (2013) Community ecology package. R package version, 2-0. https://cran.r-project.org/web/packages/vegan/index.html. Accessed 1 July 2020

  • Piratelli AJ, Franchin AG, Marín-Gómez OH (2017) Urban conservation: Toward bird-friendly cities in Latin America. Springer International Publishing, Cham. https://doi.org/10.1007/978-3-319-63475-3_8

  • Plein M, Längsfeld L, Neuschulz EL et al (2013) Constant properties of plant–frugivore networks despite fluctuations in fruit and bird communities in space and time. Ecology 94:1296–1306

    Article  Google Scholar 

  • Primack RB, Rodrigues E (2001) Biologia da Conservação. Editora Planta, Londrina Purificação KN (2014) Interactions between frugivorous birds and plants in savanna and forest formations of the Cerrado. Biota Neotropica 14(4)

  • Purificação KN, Pascotto MC, Pedroni F, Pereira JMN, Lima NA (2014) Interactions between frugivorous birds and plants in savanna and forest formations of the Cerrado. Biota Neotropica 14(4):1–14. https://doi.org/10.1590/1676-06032014006814

  • Rosenzweig C, Karoly D, Vicarelli M et al (2008) Attributing physical and biological impacts to anthropogenic climate change. Nature 453:353–358. https://doi.org/10.1038/nature06937

    Article  CAS  PubMed  Google Scholar 

  • Schleuning M, Blüthgen N, Flörchinger M et al (2011) Specialization and interaction strength in a tropical plant–frugivore network differ among forest strata. Ecology 92:26–36. https://doi.org/10.1890/09-1842.1

    Article  PubMed  Google Scholar 

  • Schupp EW, Fuentes M (1995) Spatial patterns of seed dispersal and the unification of plant population ecology. Écoscience 3:267–275. https://doi.org/10.1080/11956860.1995.11682293

    Article  Google Scholar 

  • Sick H (1997) Ornitologia Brasileira. Revisão: José Fernando Pacheco. Editora Nova Fronteira, Rio de Janeiro

    Google Scholar 

  • Silva IC, Cheung KC (2012) Levantamento da araneofauna (Arachnida, Araneae), presente em três fragmentos distintos no Instituto São Vicente, Lagoa da Cruz, Campo Grande, MS. Brasil. Monography, Universidade Católica Dom Bosco

  • Skarpe C (1992) Dynamics of savanna ecosystems. J Veg Sci :3293–300. https://doi.org/10.2307/3235754

  • Souza CS, Maruyama PK, Aoki C et al (2018) Temporal variation in plant-pollinator networks from seasonal tropical environments: Higher specialization when resources are scarce. J Ecol. https://doi.org/10.1111/1365-2745.12978

  • Souza FL, Valente-Neto F, Severo-Neto F et al (2019) Impervious surface and heterogeneity are opposite drivers to maintain bird richness in a Cerrado city. Landsc Urban Plann 192:1–10

    Article  Google Scholar 

  • Trøjelsgaard K, Olesen JM (2016) Ecological networks in motion: micro- and macroscopic variability across scales. Funct Ecol :1–10. https://doi.org/10.1111/1365-2435.12710

  • Van der Pijl L (1982) Principles of dispersal in higher plants. Springer Verlag, New York

    Book  Google Scholar 

  • Vidal MM, Hasui E, Pizo MA, Tamashiro JY, Silva WR, Guimarães PR (2014) Frugivores at higher risk of extinction are the key elements of a mutualistic network. Ecology 95(12):3440–3447. https://doi.org/10.1890/13-1584.1

    Article  Google Scholar 

  • Vieira FM, Castilho LS, Purificação KN et al (2013) Estrutura histórica da avifauna de quatro fitofisionomias do Cerrado no Parque Estadual da Serra Azul. Ornithologia 543 – 57

  • Vizentin-Bugoni J, Maruyama PK, Souza CS et al (2018) Plant-pollinator networks in the tropics: A review. In: Dáttilo W. Rico-Gray V (eds) Ecological networks in the tropics. Cham, pp 73–91

  • Weinstein BG, Graham CH (2017) Persistent bill and corolla matching despite shifting temporal resources in tropical hummingbird-plant interactions. Ecol Lett 20:326–335. https://doi.org/10.1111/ele.12730

    Article  PubMed  Google Scholar 

  • Zar JH (1999) Biostatistical analysis. Upper Saddle River, New Jersey

    Google Scholar 

Download references

Acknowledgements

This study was financed in part by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (PIBIC-CNPq). We thank all contributors for field support and logistics (particularly the project coordinator, Cristiano Carvalho) and the members of the EcoFrag group (Nicolle Prado, Klysman Fernandes and Mônica Moreira) for making this article possible. We are also grateful to the editor Dr. Glenn R. Guntenspergen and two anonymous reviewers for their valuable input on an earlier version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Letícia Koutchin Reis.

Electronic supplementary material

ESM 1

(DOCX 240 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Corral, A., Valério, L.M., Cheung, K.C. et al. Plant-bird mutualistic interactions can contribute to the regeneration of forest and non-forest urban patches in the Brazilian Cerrado. Urban Ecosyst 24, 205–213 (2021). https://doi.org/10.1007/s11252-020-01029-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11252-020-01029-8

Keywords

Navigation