Woodland fragments in urban landscapes are important bat areas: an example of the endangered Bechstein’s bat Myotis bechsteinii

Abstract

Urban areas are increasing globally causing fragmentation and loss of habitats for many forest dwelling species. At the same time new habitats are created, which may be exploited by species with a broad ecological tolerance. Bats form the largest mammal group living in cities in Central Europe. Species diversity might be higher in some cities compared to rural areas. Yet, habitat-specialists struggle with rapid landscape change and urban development. The Bechstein’s bat Myotis bechsteinii is dependent on old growth deciduous forests that supply tree cavities to roost in. The use of small home ranges requires high prey abundance around roosts. Despite their habitat specialization we identified two Bechstein’s maternity colonies within the metropolitan area of Frankfurt/Main (Germany). The colonies numbered 25 and 31 adult females respectively. We radio tracked individuals from both colonies (n = 14) and compared their habitat use to that of females (n = 79) of 11 colonies from rural woodlands. We identified a total of 29 roosts used by the two maternity colonies during summer. Roost choice of the urban forest colonies was similar to the rural forest colonies with a preference for oak trees with woodpecker holes. The distances between roosts were similar between urban and rural colonies. Habitat selection was strongly towards old forest patches. We emphasize the importance of the persistence of old forest islands within urban areas to support remaining bat colonies with a network of bat areas, similar to the important bird areas (IBAs). Specialized species that fail to adapt to the rapid changes may survive within the urban environment relying on old forest patches.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Aldridge HDJN, Brigham RM (1988) Load carrying and maneuverability in an insectivorous bat: a test of the 5% “rule” of radio-telemetry. J Mammal 69:379–382

    Article  Google Scholar 

  2. Arlettaz R, Godat S, Meyer H (2000) Competition for food by expanding pipistrelle bat populations (Pipistrellus pipistrellus) might contribute to the decline of lesser horseshoe bats (Rhinolophus hipposideros). Biol Conserv 93:55–60. https://doi.org/10.1016/S0006-3207(99)00112-3

    Article  Google Scholar 

  3. Barber JR, Crooks KR, Fristrup KM (2010) The costs of chronic noise exposure for terrestrial organisms. Trends Ecol Evol 25:180–189. https://doi.org/10.1016/j.tree.2009.08.002

    Article  PubMed  Google Scholar 

  4. Bates D, Maechler M, Bolker B,Walker S, Bojesen Christensen RH, Singmann H, Dai B, Scheipl F (2015) Fitting linear mixed-effects models using Eigen’ and S4. https://github.com/lme4/lme4/ Accessed 23 May 2020

  5. Beier P (2006) Effects of artificial night lighting on terrestrial mammals. In: Rich C, Longcore T (eds) Ecological consequences of artificial night lighting. Island Press

  6. Bogdanowicz W (2004) Pipistrellus kuhlii (Kuhl 1817) - Weißrandfledermaus. In: Krapp F (ed) Handbuch der Säugetiere Europas. Aula-Verlag, Wiebelsheim

    Google Scholar 

  7. Bögelsack K, Dietz M (2013) Traditional orchards – a suitable habitat for Bechstein’s bats. In: Dietz M (ed) Populationsökologie und Habitatansprüche der Bechsteinfledermaus Myotis bechsteinii. Beiträge zu Fachtagung in der Trinkkuranlage Bad Nauheim, 25.-26. Februar 2011:151–175

    Google Scholar 

  8. Bonier F, Martin PR, Wingfield JC (2007) Urban birds have broader environmental tolerance. Biol Lett 3:670–673. https://doi.org/10.1098/rsbl.2007.0349

    Article  PubMed  PubMed Central  Google Scholar 

  9. Bouvet A, Paillet Y, Archaux F et al (2016) Effects of forest structure, management and landscape on bird and bat communities. Environ Conserv 43:1–13. https://doi.org/10.1017/S0376892915000363

    Article  Google Scholar 

  10. Calenge C (2006) The package “adehabitat” for the R software: a tool for the analysis of space and habitat use by animals. Ecol Model 197:516–519. https://doi.org/10.1016/j.ecolmodel.2006.03.017

    Article  Google Scholar 

  11. City of Frankfurt am Main (2015) Statistical portrait Frankfurt am Main 2014. In: www.frankfurt.de. http://www.frankfurt.de/ sixcms/detail.php?id=437171. Accessed 27 Apr 2016

  12. City of Frankfurt am Main (2016) Stadtwald. In: www.frankfurt.de. http://www.frankfurt.de/sixcms/detail.php?id=2800&_ffmpar [_id_inhalt]=101676. Accessed 27 Apr 2016

  13. Clergeau P, Jokimäki J, Savard J-PL (2002) Are urban bird communities influenced by the bird diversity of adjacent landscapes?: urban bird diversity and landscape context. J Appl Ecol 38:1122–1134. https://doi.org/10.1046/j.1365-2664.2001.00666.x

    Article  Google Scholar 

  14. Czech B, Krausman PR, Devers PK (2000) Economic associations among causes of species endangerment in the United States. BioScience 50:593–601

    Article  Google Scholar 

  15. Dawo B, Kalko EKV, Dietz M (2013) Spatial organization reflects the social Organization in Bechstein’s bats. Ann Zool Fenn 50:356–370. https://doi.org/10.5735/086.050.0601

    Article  Google Scholar 

  16. Dietz M, Hörig A (2011) Thermoregulation of tree-dwelling temperate bats – a behavioural adaptation to force live history strategy. Folia Zool 60:5–60

    Article  Google Scholar 

  17. Dietz M, Kalko EKV (2007) Reproduction affects flight activity in female and male Daubenton’s bats, Myotis daubentonii. Can J Zool 85:653–664. https://doi.org/10.1139/z07-045

    Article  Google Scholar 

  18. Dietz M, Pir JB (2009) Distribution and habitat selection of Myotis bechsteinii Kuhl 1817 (Chiroptera, Vespertilionidae) in Luxembourg – implications for Forest management and conservation. Folia Zool 58:327–340

    Google Scholar 

  19. Dietz M, Pir JB (2011) Distribution, ecology and habitat selection by Bechstein’s bat (Myotis bechsteinii) in Luxemburg. Ökol Säugetiere 6:1–88

    Google Scholar 

  20. Dietz M, Bögelsack K, Güttinger R, Krannich A (2013) Die Bechsteinfledermaus Myotis bechsteinii – eine Leit- und Zielart für den Waldnaturschutz? Eine Synthese. In: Dietz M (ed) Populationsökologie und Habitatansprüche der Bechsteinfledermaus Myotis bechsteinii. Beiträge zu Fachtagung in der Trinkkuranlage Bad Nauheim, 25.-26. Februar 2011:317–334

    Google Scholar 

  21. Fahrig L (1997) Relative effects of habitat loss and fragmentation on population extinction. J Wildl Manag 61:603–610

    Article  Google Scholar 

  22. Fahrig L, Rytwinski T (2009) Effects of roads on animal abundance: an empirical review and synthesis. Ecol Soc 14

  23. Getz WM, Fortmann-Roe S, Cross PC, Lyons AJ, Ryan SJ, Wilmers CC (2007) LoCoH: Nonparameteric kernel methods for constructing home ranges and utilization distributions. PLoS One 2:e207. https://doi.org/10.1371/journal.pone.0000207

    Article  PubMed  PubMed Central  Google Scholar 

  24. Gilbert OL (1995) The ecology of urban habitats, reprinted. Chapman & Hall, London

    Google Scholar 

  25. Grimm NB, Faeth SH, Golubiewski NE, Redman CL, Wu J, Bai X, Briggs JM (2008) Global change and the ecology of cities. Science 319:756–760

    CAS  Article  Google Scholar 

  26. Hale JD, Fairbrass AJ, Matthews TJ, Sadler JP (2012) Habitat composition and connectivity predicts bat presence and activity at foraging sites in a large UK conurbation. PLoS One 7:e33300. https://doi.org/10.1371/journal.pone.0033300

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. Harris S, Cresswell WJ, Forde PG et al (1990) Home-range analysis using radio-tracking data - a review of problems and techniques particularly as applied to the study of mammals. Mammal Rev 20:97–123

    Article  Google Scholar 

  28. Hooge PNB, Eichenlaub (2000) Animal movement extension to Arcview. ver. 2.0. U.S. Geological Survey, Anchorage, AK, USA

  29. Hutson AM, Mickleburgh SP, Racey PA (2001) Microchiropteran bats: global status survey and conservation action plan. IUCN, Gland ; Cambridge

  30. Ivlev VS (1961) Experimental ecology of the feeding of fishes. Yale University Press

  31. Jokimäki J, Suhonen J, Jokimäki-Kaisanlahti M-L, Carbó-Ramírez P (2014) Effects of urbanization on breeding birds in European towns: impacts of species traits. Urban Ecosyst 19:1565–1577. https://doi.org/10.1007/s11252-014-0423-7

    Article  Google Scholar 

  32. Jones G, Rydell J (1994) Foraging strategy and predation risk as factors influencing emergence time in Echolocating bats. Philos Trans R Soc Lond Ser B Biol Sci 346:445–455. https://doi.org/10.1098/rstb.1994.0161

    Article  Google Scholar 

  33. Jones KE, Purvis A, Gittleman JL, Losos AEJB (2003) Biological correlates of extinction risk in bats. Am Nat 161:601–614. https://doi.org/10.1086/368289

    Article  PubMed  Google Scholar 

  34. Jung K, Kalko EKV (2011) Adaptability and vulnerability of high flying Neotropical aerial insectivorous bats to urbanization: responses of insectivorous bats to urbanization. Divers Distrib 17:262–274. https://doi.org/10.1111/j.1472-4642.2010.00738.x

    Article  Google Scholar 

  35. Jung K, Threlfall CG (2016) Urbanisation and its effects on bats—a global meta-analysis. In: Voigt CC, Kingston T (eds) Bats in the Anthropocene: conservation of bats in a changing world. Springer International Publishing, Cham, pp 13–33

    Google Scholar 

  36. Kerth G, Melber M (2009) Species-specific barrier effects of a motorway on the habitat use of two threatened forest-living bat species. Biol Conserv 142:270–279. https://doi.org/10.1016/j.biocon.2008.10.022

    Article  Google Scholar 

  37. Kerth G, Wagner M, König B (2001a) Roosting together, foraging apart: information transfer about food is unlikely to explain sociality in female Bechstein’s bats (Myotis bechsteinii). Behav Ecol Sociobiol 50:283–291. https://doi.org/10.1007/s002650100352

    Article  Google Scholar 

  38. Kerth G, Weissmann K, König B (2001b) Day roost selection in female Bechstein’s bats (Myotis bechsteinii): a field experiment to determine the influence of roost temperature. Oecologia 126:1–9. https://doi.org/10.1007/s004420000489

    Article  PubMed  Google Scholar 

  39. Krannich A (2009) Raumzeitliche Integration der Landschaft beim Braunen Langohr (Plecotus auritus LINNAEUS, 1758) im Streuobstkorridor Rhein-Main-Kinzig. Diplomarbeit, Westfälische Wilhelms-Universität, Institut für Landschaftsökologie

    Google Scholar 

  40. Krebs CJ (1999) Ecological methodology, 2nd edn. Benjamin/Cummings, Menlo Park, Calif

    Google Scholar 

  41. Lack D, Owen DF (1955) The food of the swift. J Anim Ecol 24:120–136

    Article  Google Scholar 

  42. Lesiński G, Fuszara E, Kowalski M (2000) Foraging areas and relative density of bats (Chiroptera) in differently human transformed landscapes. Z Für Säugetierkd 65:129–137

    Google Scholar 

  43. Lintott PR, Barlow K, Bunnefeld N, Biggs P, Roig CG, Park K (2016) Differential responses of cryptic bat species to the urban landscape. Ecology and Evolution 6(7):2044–2052. https://doi.org/10.1002/ece3.1996

  44. Lowry H, Lill A, Wong BBM (2013) Behavioural responses of wildlife to urban environments: Behavioural responses to urban environments. Biol Rev 88:537–549. https://doi.org/10.1111/brv.12012

    Article  PubMed  Google Scholar 

  45. Magle SB, Hunt VM, Vernon M, Crooks KR (2012) Urban wildlife research: past, present, and future. Biol Conserv 155:23–32

    Article  Google Scholar 

  46. Markovchick-Nicholls L, Regan HM, Deutschman DH et al (2008) Relationships between human disturbance and wildlife land use in urban habitat fragments. Conserv Biol 22:99–109

    Article  Google Scholar 

  47. Mcdonald RI, Kareiva P, Forman RTT (2008) The implications of current and future urbanization for global protected areas and biodiversity conservation. Biol Conserv 141:1695–1703. https://doi.org/10.1016/j.biocon.2008.04.025

    Article  Google Scholar 

  48. McKinney ML (2002) Urbanization, biodiversity, and conservation: the impacts of urbanization on native species are poorly studied, but educating a highly urbanized human population about these impacts can greatly improve species conservation in all ecosystems. BioScience 52:883–890

    Article  Google Scholar 

  49. Millspaugh JJ, Marzluff JM (eds) (2001) Radio tracking and animal populations. Academic Press, San Diego

    Google Scholar 

  50. Mitchell-Jones AJ, Amori G, Bogdanowicz W et al (1999) The atlas of European mammals. Poyser Natural History, London

    Google Scholar 

  51. Mohr CO (1947) Table of equivalent populations of north American small mammals. Am Midl Nat 37:223. https://doi.org/10.2307/2421652

    Article  Google Scholar 

  52. Müller J, Mehr M, Bässler C, Fenton MB, Hothorn T, Pretzsch H, Klemmt HJ, Brandl R (2012) Aggregative response in bats: prey abundance versus habitat. Oecologia 169:673–684. https://doi.org/10.1007/s00442-011-2247-y

    Article  PubMed  Google Scholar 

  53. Napal M, Garin I, Goiti U et al (2010) Habitat selection by Myotis bechsteinii in the southwestern Iberian Peninsula. Ann Zool Fenn 47:12

    Article  Google Scholar 

  54. Nicholls B, Racey PA (2006a) Contrasting home-range size and spatial partitioning in cryptic and sympatric pipistrelle bats. Behav Ecol Sociobiol 61:131–142. https://doi.org/10.1007/s00265-006-0244-7

    Article  Google Scholar 

  55. Nicholls B, Racey PA (2006b) Habitat selection as a mechanism of resource partitioning in two cryptic bat species Pipistrellus pipistrellus and Pipistrellus pygmaeus. Ecography 29:697–708

    Article  Google Scholar 

  56. Pickett STA, Cadenasso ML, Nilon CH et al (2001) Urban ecological systems: linking terrestrial ecological, physical, and socioeconomic components of metropolitan areas. Annu Rev Ecol Syst 32:127–157

    Article  Google Scholar 

  57. R Development Core TEAM (2009) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org Accessed 28 Feb 2016

  58. R Development Core TEAM (2018) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org Accessed 05 Aug 2018

  59. Racey PA (1974) Ageing and assessment of reproductive status of Pipistrelle bats, Pipistrellus pipistrellus. J Zool Lond 173:264–271

    CAS  Article  Google Scholar 

  60. Racey PA (2009) Reproductive assessment in bats. In: ecological and behavioral methods for the study of bats, 2nd edn. Johns Hopkins University press, Baltimore

  61. Rolando A, Maffei G, Pulcher C, Giuso A (1997) Avian community structure along an urbanization gradient. Ital J Zool 64:341–349. https://doi.org/10.1080/11250009709356221

    Article  Google Scholar 

  62. Ruczyński I, Bogdanowicz W (2005) Roost cavity selection by Nyctalus noctula and N. leisleri (Vespertilionidae, Chiroptera) in Bialowieża primeval forest, eastern Poland. J Mammal 86:921–930

    Article  Google Scholar 

  63. Russo D, Ancillotto L (2015) Sensitivity of bats to urbanization: a review. Mamm Biol - Z Für Säugetierkd 80:205–212. https://doi.org/10.1016/j.mambio.2014.10.003

    Article  Google Scholar 

  64. Sachanowicz K, Wower A, Bashta A-T (2006) Further range extension of Pipistrellus kuhlii (Kuhl, 1817) in central and eastern Europe. Acta Chiropterologica 8:543–548. https://doi.org/10.3161/1733-5329(2006)8[543:FREOPK]2.0.CO;2

    Article  Google Scholar 

  65. Safi K, Kerth G (2004) A comparative analysis of specialization and extinction risk in temperate-zone bats. Conserv Biol 18:1293–1303

    Article  Google Scholar 

  66. Samuel MD, Green RE (1988) A revised test procedure for identifying Core areas within the home range. J Anim Ecol 57:1067–1068. https://doi.org/10.2307/5112

    Article  Google Scholar 

  67. Samuel MD, Pierce DJ, Garton EO (1985) Identifying areas of concentrated use within the home range. J Anim Ecol 54:711–719. https://doi.org/10.2307/4373

    Article  Google Scholar 

  68. Schaub A, Ostwald J, Siemers BM (2008) Foraging bats avoid noise. J Exp Biol 211:3174–3180. https://doi.org/10.1242/jeb.022863

    Article  PubMed  Google Scholar 

  69. Scolozzi R, Geneletti D (2012) A multi-scale qualitative approach to assess the impact of urbanization on natural habitats and their connectivity. Environ Impact Assess Rev 36:9–22

    Article  Google Scholar 

  70. Siemers BM, Swift SM (2006) Differences in sensory ecology contribute to resource partitioning in the bats Myotis bechsteinii and Myotis nattereri (Chiroptera: Vespertilionidae). Behav Ecol Sociobiol 59:373–380

    Article  Google Scholar 

  71. Steck C, Brinkmann R (2013) Vom Punkt in die Fläche: Habitatmodelle als Instrument zur Abrenzung von Lebensstätten der Bechsteinfledermaus am südlichen Oberrhein. In: Dietz M (ed) Populationsökologie und Habitatansprüche der Bechsteinfledermaus Myotis bechsteinii. Beiträge der Fachtagung in der Trinkkuranlage Bad Nauheim 25.-26. Februar 2011:69–83

    Google Scholar 

  72. Stone EL, Harris S, Jones G (2015) Impacts of artificial lighting on bats: a review of challenges and solutions. Mamm Biol - Z Für Säugetierkd 80:213–219. https://doi.org/10.1016/j.mambio.2015.02.004

    Article  Google Scholar 

  73. Threlfall C, Law B, Penman T, Banks PB (2011) Ecological processes in urban landscapes: mechanisms influencing the distribution and activity of insectivorous bats. Ecography 34:814–826. https://doi.org/10.1111/j.1600-0587.2010.06939.x

    Article  Google Scholar 

  74. Threlfall CG, Law B, Banks PB (2012) Sensitivity of insectivorous bats to urbanization: implications for suburban conservation planning. Biol Conserv 146:41–52. https://doi.org/10.1016/j.biocon.2011.11.026

    Article  Google Scholar 

  75. Tomassini A, Colangelo P, Agnelli P, Jones G, Russo D (2014) Cranial size has increased over 133 years in a common bat, Pipistrellus kuhlii : a response to changing climate or urbanization? J Biogeogr 41:944–953. https://doi.org/10.1111/jbi.12248

    Article  Google Scholar 

  76. Weber N, Kalko EKV, Fahr J (2009) A first assessment of home range and foraging behaviour of the African long-tongued bat Megaloglossus woermanni (Chiroptera: Pteropodidae) in a heterogeneous landscape within the Lama Forest reserve, Benin. Acta Chiropterologica 11:317–329. https://doi.org/10.3161/150811009X485558

    Article  Google Scholar 

  77. Weinbeer M, Kalko EKV (2004) Morphological characteristics predict alternate foraging strategy and microhabitat selection in the Orange-bellied bat, Lampronycteris brachyotis. J Mammal 85:1116–1123. https://doi.org/10.1644/BWG-206.1

    Article  Google Scholar 

  78. White GC, Garrott RA (1990) Analysis of wildlife radio-tracking data. Academic Press, San Diego

    Google Scholar 

Download references

Acknowledgements

We are grateful to all the people who were engaged in the intensive field-work: Elena Krannich, Felix Normann, and Katharina Schieber. Kim Stey and Lisa Höcker gave us very helpful comments to the manuscript. We thank Arron Honniball and John Abigale for their support in language and linguistic style; and Sascha Buchholz for his advice on our statistical analyses. We are also grateful to two anonymous referees for their advices.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Markus Dietz.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dietz, M., Bögelsack, K., Krannich, A. et al. Woodland fragments in urban landscapes are important bat areas: an example of the endangered Bechstein’s bat Myotis bechsteinii. Urban Ecosyst 23, 1359–1370 (2020). https://doi.org/10.1007/s11252-020-01008-z

Download citation

Keywords

  • Myotis bechsteinii
  • Urbanization
  • Urban woodland
  • Radio tracking