Urban vegetation cover correlates with environmental variables in a desert city: insights of mitigation measures to climate change

Abstract

Green cover and air quality are important components of life quality and human ecology in arid lands. In the Sonoran Desert of Mexico, Hermosillo is the largest city with a population of 710,000. This city is currently affected by dust pollution and a large part of its population suffers respiratory diseases. Moreover, Hermosillo is considered highly vulnerable to climate change. The objective of this work was to correlate socio-economic variables such as population density and unpaved cover to total suspended particles (TSP), daily temperature oscillation (DTO), and vegetation cover (VC) to establish priority zones for reforestation for the city government. We divided Hermosillo in 440 sampling areas corresponding to Basic Geostatistics Urban Areas (AGEB) as defined by Instituto Nacional de Estadística Geografía e Informática (INEGI). We estimated TSP and DTO for each AGEB by spatial interpolation using the splines with barriers from 3 and 7 sampling stations, respectively. We obtained population density for each AGEB from the 2010 Population and Housing Census by INEGI and percentage of unpaved cover for each AGEB from municipal government records. We mapped VC analyzing digital aerial ortho-photos (resolution 15 × 15 cm per pixel) using GIS and manual digitization. We estimated VC at the AGEB level by sampling. Average VC percentage for Hermosillo is 6.4%. We also found that VC is negatively associated with TSP and DTO, highlighting the importance of further increasing green cover to enhance urban life quality in arid lands. Population density (PD) and unpaved cover (UC) were also positively correlated to DTO and marginally with TSP. Our research approach at a local scale, using an accessible methodology and inexpensive data inputs, can be easily applied to other arid cities around the world. We produced a map of prioritization reforestation zones for Hermosillo.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Battista G, Lieto-Vollaro R (2017) Correlation between air pollution and weather data in urban areas: assessment of the city of Rome (Italy) as spatially and temporally independent regarding pollutants. Atmos Environ 165:240–247

  2. Bowler DE, Buyung-Ali L, Knight T, Pullin A (2010) Urban greening to cool towns and cities: a systematic review of the empirical evidence. Landsc Urban Plan 97:147–155

    Google Scholar 

  3. Cavazos Pérez MT, Arriaga Ramírez S (2012) Downscaled climate change scenarios for Baja California and the north American monsoon during the twenty-first century. J Clim 25(17):5904–5915. https://doi.org/10.1175/JCLI-D-1100425.1

  4. Chow WT, Pope RL, Martin CA, Brazel AJ (2011) Observing and modeling the nocturnal park cool island of an arid city: horizontal and vertical impacts. Theor Appl Climatol 103(1–2):197–211

    Google Scholar 

  5. Comrie AC (2000) Mapping a wind-modified urban heat island in Tucson. Arizona Bull Amer Meteor Soc 81:2417–2431

    Google Scholar 

  6. CONAFOR, Comisión Nacional Forestal (2014) Manual de monitoreo de Carbono en sistemas agroforestales. Available at https://www.conafor.gob.mx/innovacion_forestal/?p=952

  7. Cruz-Campas ME, Gómez-Álvarez A, Quintero-Núñez M, Ramírez-Leal R, Varela-Salazar J, y Monge- Amaya O (2014) Air quality regarding to TSP in six cities of Sonora, Mexico, a criticism to the NOM- 025-SSA1-1993 and a proposed criterion for its non- compliance. J Environ Prot 5:862–873. https://doi.org/10.4236/jep.2014.510088

  8. Development Core Team R (2018) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

    Google Scholar 

  9. Díaz-Caravantes RE, Castro-Luque AL, Aranda-Gallegos P (2014) Mortalidad por calor natural excesivo en el noroeste de México: Condicionantes sociales asociados a esta causa de muerte. Frontera Norte 26(52):155–177. Disponible en: <https://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0187-73722014000200007&lng=es&nrm=iso>. Accessed 27 March 2020

  10. Dominick D, Latif MT, Juahir H, Aris AZ, Zain SM (2012) An assessment of influence of meteorological factors on PM10 and NO2 at selected stations in Malaysia. Sustainable Environment Research 22(5):305–315

    CAS  Google Scholar 

  11. Duarte-Tagles H, Garza-Cuevas R (1997). Tesis. Remoción de partículas suspendidas totales (PST) y plomo (Pb) asociado por especies vegetales presentes en el Área Metropolitana de Monterrey (AMM). Instituto Tecnológico de Estudios Superiores de Monterrey. p. 15–17

  12. Eakin HC (2006) Weathering risk in rural Mexico: climatic, institutional, and economic change. University of Arizona Press, Tucson

  13. Escobedo F, Chacalo A (2008) Estimación preliminar de la descontaminación atmosférica por el arbolado urbano de la ciudad de México. Interciencia 33(1):29–33

    Google Scholar 

  14. ESRI (2011) ArcGIS desktop: release 10. Environmental Systems Research Institute, Redlands, CA

    Google Scholar 

  15. Fall S, Niyogi D, Gluhovsky A, Pielke RA Sr, Kalnay E, Rochon G (2010) Impacts of land use land cover on temperature trends over the continental United States: assessment using the north American regional reanalysis. Int J Climatol 30:1980–1993

    Google Scholar 

  16. García-Cueto OR, Santillán-Soto N, Quintero-Núñez M, Ojeda-Benítez S, Velázquez-Limón N (2013) Extreme temperature scenarios in Mexicali, Mexico under climate change conditions. Atmósfera 26(4):509–520

    Google Scholar 

  17. Gill S, Handley J, Ennos R, Pauleit S (2007) Adapting cities for climate change: the role of the green infrastructure. Built Environ 33(1):115–133. https://doi.org/10.2148/benv.33.1.115

  18. Givoni B (1991) Impact of planted areas on urban environmental quality: a review. Atmos Environ 25B(3):289–299

    Google Scholar 

  19. Grimm NB, Foster D, Groffman P, Grove JM, Hopkinson CS, Nadelhoffer KJ, Pataki DE, Peters DPC (2008) The changing landscape: ecosystem responses to urbanization and pollution across climatic and societal gradients. Frontiers Ecology Environment 2008 6(5):264–272

    Google Scholar 

  20. Hawkins TW, Brazel AJ, Stefanov WL, Bigler W, Saffell EL (2004) The role of rural variability in urban heat island determination for Phoenix. Arizona J Appl Meteor 43:476–486

    Google Scholar 

  21. IMPLAN, Instituto Municipal de Planeación Urbana del Municipio de Hermosillo (2006) Plan municipal de Desarrollo Urbano, En donde estamos? Hermosillo, Sonora, 139p

    Google Scholar 

  22. IMPLAN, Instituto Municipal de Planeación Urbana del Municipio de Hermosillo (2011). Programa Parcial de mejoramiento y conservación del centro urbano Hermosillo. pp. 12–16

  23. Instituto Nacional de Estadística,Geografía e Informática (INEGI) (2000) Diccionario de datos climáticos (Vectorial). p 57

  24. Instituto Nacional de Estadística,Geografía e Informática (INEGI) (2010) Censo de población y vivienda. Manual de cartografía geoestadística. pp: 7–8

  25. Instituto Nacional de Estadística,Geografía e Informática (INEGI) (2014) Guía para la interpretación de cartografía: uso del suelo y vegetación: escala 1:250,000. p 195

  26. Instituto Nacional de Estadística, Geografía e Informática (INEGI) (2016) Guía para la interpretación de cartografía: uso del suelo y vegetación: escala 1:250,000. p 195

  27. IPCC (2018) Summary for policymakers. In: Masson-Delmotte V, Zhai P, Pörtner H-O, Roberts D, Skea J, Shukla PR, Pirani A, Moufouma-Okia W, Péan C, Pidcock R, Connors S, Matthews JBR, Chen Y, Zhou X, Gomis MI, Lonnoy E, Maycock T, Tignor M, Waterfield T (eds) Global warming of 1.5°C an IPCC special report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. World Meteorological Organization, Geneva

  28. Jacob DJ, Winner DA (2009) Effect of climate change on air quality. Atmos Environ 43(1):51–63

    CAS  Google Scholar 

  29. Jauregui E (1991) Influence of a large urban park on temperature and convective precipitation in a tropical city. Energy and Buildings 15:457–463

    Google Scholar 

  30. Jenerette G, Clarke LW, Avolio ML, Pataki DE, Gillespie TW, Pincetl S, Nowak DJ, Hutyra LR, McHale M, McFadden JP, Alonzo M (2016) Climate tolerances and trait choices shape continental patterns of urban tree biodiversity. Glob Ecol Biogeogr 25:1367–1376. https://doi.org/10.1111/geb.12499

  31. Jonsson P (2004) Vegetation as an urban climate control in the subtropical city of Gaborone. Botswana Int J Climatol 24:1307–1322

    Google Scholar 

  32. Kleerekoper L, Van Esch MA, Baldiri T (2012) How to make a city climate-proof, addressing the urban heat island effect. Resour Conserv Recycl 64:30–38

    Google Scholar 

  33. Kotharkar R, Bagade A (2018) Evaluating urban heat island in the critical local climate zones of an Indian city. Landsc Urban Plan 169:92–104

    Google Scholar 

  34. Kutner MH, Nachtsheim CJ, Neter J, Li W (2005) Applied linear statistical models, 5th edn. McGraw-Hill/Irwin, New York, NY

    Google Scholar 

  35. Luber G, McGeehin M (2008) Climate change and extreme heat events. Am J Prev Med 35:429–435

    PubMed  Google Scholar 

  36. Mahmood R, Pielke RA Sr, Hubbard KG et al (2014) Review. Land cover changes and their biogeophysical effects on climate International Journal of Climatology 34:929–953

    Google Scholar 

  37. Martínez-Salido J (2017) Análisis de cobertura vegetal y composición de especies de parques y jardines de Hermosillo, Bachelor thesis. Universidad Estatal de Sonora, Hermosillo, Mexico

    Google Scholar 

  38. McDonald AG, Bealey WJ, Fowler D, Dragosits U, Skiba U, Smith RI, Donovan RG, Brett HE, Hewitt CN, Nemitz E (2007) Quantifying the effect of urban treeplanting on concentrations and depositions of PM10 in two UK conurbations. Atmos Environ 41:8455–8467

    CAS  Google Scholar 

  39. Mendoza VM, Villanueva E, Adem J (1997) Numerical experiments on the prediction of sea surface temperature anomalies in the Gulf of Mexico. J Mar Syst 13(s1–4):83–99. https://doi.org/10.1016/S0924-7963(96)00120-0

  40. Mercado-Maldonado L, Marincic-Lovriha L (2017) Morphology of the urban heat island of Hermosillo, Sonora and the contribution towards a sustainable city. Biotecnia XIX E3:27–33

    Google Scholar 

  41. Meza-Figueroa D, Gonzalez-Grijalva B, Del Rio-Salas R, Coimbra R, Ochoa-Landin L, Moreno-Rodríguez V (2016) Traffic suspended dust at pedestrial levels in semiarid zones: implications for human exposure. Atmos Environ 138:4–14. https://doi.org/10.1016/j.atmosenv.2016.05.005

  42. Moreno-Rodríguez V, Del Rio-Salas R, Adams DK, Ochoa-Landin L, Zepeda J, Agustín Gómez-Alvarez A, Palafox-Reyes J, Meza-Figueroa D (2015) Historical trends and sources of TSP in a Sonoran desert city: can the North America monsoon enhance dust emissions? Atmos Environ 110:111–121

    Google Scholar 

  43. Navarro L and Moreno V (2016). Cambios en el paisaje arbolado en Hermosillo: escasez de agua y plantas nativas. Revista Region y Sociedad. XXVIII No. 67, 2016. pp. 85–96

  44. Navarro-Estupiñan J, Robles-Morua A, Vivoni E, Espíndola-Zepeda E, Montoya JA, Verduzco VS (2018) Observed trends and future projections of extreme heat events in Sonora, Mexico. Int J Climatol. https://doi.org/10.1002/joc.5719

  45. Niachou A, Papakonstantinou K, Santamouris M, Tsangrassoulis A, Mihalakakou G (2001) Analysis of the green roof thermal properties and investigation of its energy performance. Energy and Buildings 33(7):719–729

    Google Scholar 

  46. Nowak DJ (2000) The interactions between urban forests and global climate change. In: Abdollahi K, Ning ZH, Appeaning A (eds) Global climate change and the urban Forest. GCRCC and Franklin Press, Baton Rouge, LA, pp 31–44

    Google Scholar 

  47. Nowak DJ, Crane DE (2000) The urban Forest effects (UFORE) model: quantifying urban forest structure and functions. In: Hansen, M. and T. Burk (Eds.) integrated tools for natural resources inventories in the 21st century. USDA Forest Service general technical report NC-212. St. Paul, MN, pp 714–720

    Google Scholar 

  48. Nowak DJ, Heisler GM (2010) Improving air quality with trees and parks. Research series monograph. National Recreation and Parks Association Research Series Monograph, Ashburn, VA, 44 p

    Google Scholar 

  49. Nowak D, Crane DE, Stevens JC (2006) Air pollution removal by urban trees and shrubs in the United States urban forestry & urban greening 4, 115–123. https://doi.org/10.1016/j.ufug.2006.01.007

  50. Nowak DJ, Stevens JC, Sisinni SM, Luley CJ (2002) Effects of urban tree management and species selection on atmospheric carbon dioxide. J Arboric 28(3):113–122

    Google Scholar 

  51. Nowak DJ, Hirabayashi S, Bodine A, Hoehn R (2013) Modeled PM2.5 removal by trees in ten US cities and associated health effects. Environ Pollut 178:395–402

    CAS  PubMed  Google Scholar 

  52. Nowak DJ, Hirabayashi S, Ellis E, Greenfield EJ (2014) Tree and forest effects on air quality and human health in the United States. Environ Pollut 193:119–129

    CAS  PubMed  Google Scholar 

  53. Nowak DJ, Hirabayashi S, Doyle M, McGovern M, Pasher J (2018) Air pollution removal by urban forests in Canada and its effect on air quality and human health. Urban For Urban Green 29:40–48

    Google Scholar 

  54. OMS 2016. Impacto del medio ambiente en la salud, ¿cuál es el panorama general?. Organización Mundial de la Salud. Recuperado de https://www.who.int/quantifying_ehimpacts/publications/PHE-prevention-diseases-infographic-ES.pdf?ua=1

  55. Onmura S, Matsumoto M, Hokoi S (2001) Study on evaporative cooling effect of roof lawn gardens. Energy and Buildings 33(7):653–666

    Google Scholar 

  56. Ortega-Rosas CI, Calderón-Ezquerro MC, Gutiérrez-Ruacho OG (2019) Fungal spores and pollen are correlated with meteorological variables: effects in human health at Hermosillo, Sonora, Mexico. Int J Environ Health Res. https://doi.org/10.1080/09603123.2019.1625031

  57. Papadakis G, Tsamis P, Kyritsis S (2001) An experimental investigation of the effect of shading with plants for solar control of buildings. Energy and Buildings 33(8):831–836

    Google Scholar 

  58. Perini K, Magliocco A (2014) Effects of vegetation, urban density, building height, and atmospheric conditions on local temperatures and thermal comfort. Urban For Urban Green 13:495–506

    Google Scholar 

  59. Pineda-Pablos N, Scott CA, Wilder M (2012) Hermosillo, ciudad sin agua Para crecer. Vulnerabilidad hídrica y retos ante el Cambio Climático. In. Wilder, M. Scott, C.a., Pineda-Pablos N (eds). Moving forward from vulnerability to adaptation: climate change, drought, and water demand in the urbanization southwestern United States and northern Mexico. Udall center for studies in public policy. The University of Arizona, Tucson, pp 125–169

  60. Saaroni A, Ziv B (2010) Estimating the urban Heat Island contribution to urban and rural air temperature. J Appl Meteorol Climatol 49:2159–2166

    Google Scholar 

  61. Sáenz-Romero C, Rehfeldt GE, Crookston NL, Duval P, St-Amant R, Beaulieu J, Richardson BA (2010) Spline models of contemporary, 2030, 2060 and 2090 climates for México and their use in understanding climate-change impacts on the vegetation. Clim Chang 102:595–623

    Google Scholar 

  62. Santamouris M, Haddad S, Fiorito F, Osmond P, Ding L, Prasad D, Zhai X, Wang R (2017) Urban Heat Island and overheating characteristics in Sydney, Australia. An Analysis of Multiyear Measurements Sustainability 9:712

    Google Scholar 

  63. Skelhorn C, Lindleya S, Levermore G (2014) The impact of vegetation types on air and surface temperatures in a temperate city: A fine scale assessment in Manchester, UK. Landsc Urban Plan 121:129–140

  64. Smith WH (1990) Air pollution and forests. Springer-Verlag, New York, 618 p

    Google Scholar 

  65. Stone B Jr, Hess JJ, Frumkin H (2010) Urban form and extreme heat events: are sprawling cities more vulnerable to climate change than compact cities? Environ Health Perspect 118(10)

  66. Susca T., Gaffin S.R., Dell’Osso G. R (2011). Positive effects of vegetation: urban heat island and green roofs. Environ Pollut 159 (8–9), 2119–2126

  67. Terzopoulos D (1988) The computation of visible-surface representations. IEEE Trans Pattern Anal Mach Intell 10(4):417–438

    Google Scholar 

  68. URBED (2004) Biodiversity by design - a guide for sustainable communities. Town and Country Planning Association, London

    Google Scholar 

  69. Van de Voorde T, Vlaeminck J, Canters F (2008) Comparing different approaches for mapping urban vegetation cover from Landsat ETM+ data: a case study on Brussels. Sensors 8:3880–3902. https://doi.org/10.3390/s8063880

    Article  PubMed  Google Scholar 

  70. Wilder M, Scott CA, Pineda-Pablos N, Varady RG, Garfin GM (eds) (2012) Moving forward from vulnerability to adaptation: climate change, drought, and water demand in the urbanizing southwestern United States and northern Mexico. Udall Center for Studies in Public Policy, The University of Arizona, Tucson

    Google Scholar 

  71. Yin J, Zheng Y, Wu R, Tan J, Ye D, Wang W (2012) An analysis of influential factors on outdoor thermal comfort in summer. Int J Biometeorol 56(5):941–948

    PubMed  Google Scholar 

  72. Zaharim A, M. Shaharuddin, M. Nor J. M, Karim O. A, and Sopian K, “Relationships between airborne particulate matter and meteorological variables using non-decimated wavelet transform,” Eur J Sci Res, vol. 27, no. 2, pp. 308–312, 2009

  73. Zhang Y, Murray AT, Turner BL II (2017) Optimizing green space locations to reduce daytime and nighttime urban heat island effects in Phoenix, Arizona. Landsc Urban Plan 165:162–171

    Google Scholar 

  74. Zhou D, Zhao S, Liu S, Zhang L (2014) Spatiotemporal trends of terrestrial vegetation activity along the urban development intensity gradient in China's 32 major cities. Sci Total Environ 488:136–145

    PubMed  Google Scholar 

  75. Zisca LH, Epstein PR, Rogers CA (2008) Climate change, aerobiology, and public health in the Northeast United States. Mitig Adapt Strateg Glob Chang 13:607–613

    Google Scholar 

  76. Zuñiga-Teran AA (2017) Green infrastructure in walkable neighborhoods: a climate change adaptation strategy for cities in drylands. In: Delgado-Ramos (ed) Climate change-sensitive cities: building capacities for urban resilience, sustainability, and equity. Research Program on Climate Change of the National Autonomous University of Mexico, 352 pp

Download references

Acknowledgments

Funding was provided by Consejo Nacional de Ciencia y Tecnología (CONACYT) through Grant FSIA CONACYT-SEMARNAT 2015 (#263413). C. Enciso-Miranda was a recipient of a CONACyT master’s fellowship (#646946). We thank Instituto Municipal de Planeación Urbana (IMPLAN) from Hermosillo for providing aerial imagery and logistic support. We also thank volunteer’s students from the bachelor’s degree program in Ecology from Universidad Estatal de Sonora for their help in the fieldwork. We thank the anonymous reviewers and R. Tafanelli for their insightful comments that helped improve this manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Carmen Isela Ortega-Rosas.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ortega-Rosas, C.I., Enciso-Miranda, C.A., Macías-Duarte, A. et al. Urban vegetation cover correlates with environmental variables in a desert city: insights of mitigation measures to climate change. Urban Ecosyst 23, 1191–1207 (2020). https://doi.org/10.1007/s11252-020-00982-8

Download citation

Keywords

  • Vegetation cover
  • Urban planning
  • Desert city
  • Total suspended particles
  • Daily temperature oscillation
  • Climate change