Skip to main content

An integrated dietary assessment increases feeding event detection in an urban carnivore

A Publisher Correction to this article was published on 14 March 2020

This article has been updated

Abstract

Urbanisation radically changes habitats and alters available resources. Populations of large, highly mobile species are often extirpated at the urban-wildland interface, while species like mesocarnivores may thrive by capitalising on changes in prey abundance. We investigated the diet of the caracal (Caracal caracal), a medium-sized felid inhabiting patchy natural habitat isolated within the dense urban matrix of South Africa’s second largest city, Cape Town. We systematically integrated two classic dietary methods (scat and GPS clusters) by accounting for gut transit times. As part of a larger caracal ecology study, we GPS-collared 26 individuals over a two-year period (2014–2016) to generate coarse (3-hour) and fine-scale (20-minute) GPS movement data. Using the movement data, we investigated 677 GPS-clusters for prey remains. We collected 654 scats, half of which were found at GPS-clusters and were linked with the individual sampled. By systematically correcting for a range of gut transit times, we determined whether scat at cluster sites was from the same or an earlier feeding event, thereby increasing the overall detection of feeding events by > 50%. Avian prey dominated GPS cluster findings while micromammals were overwhelmingly represented in scat. Although > 40% of feeding events occurred within 200 meters of the urban edge, caracals largely preyed on native species. Our findings have implications for understanding the ability of some species to persist in the face of rapid environmental change, human-wildlife conflict, pathogen transmission, and bioaccumulation of pesticides. Further, this approach could be incorporated into studies that estimate foraging-explicit resource selection and habitat preference.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Change history

  • 14 March 2020

    The Publisher would like to correct the introduced formatting errors on the caption of Figure 1 and in the data in Table 2.

References

  1. Adams JR, Waits LP (2007) An efficient method for screening faecal DNA genotypes and detecting new individuals and hybrids in the red wolf (Canis rufus) experimental population area. Conserv Genet 8:123–131. https://doi.org/10.1007/s10592-006-9154-5

    CAS  Article  Google Scholar 

  2. Allen BL, Carmelito E, Amos M et al (2016) Diet of dingoes and other wild dogs in peri-urban areas of north-eastern Australia. Sci Rep 6:1–8. https://doi.org/10.1038/srep23028

    CAS  Article  Google Scholar 

  3. Anderson CRJ, Lindzey FG (2003) Estimating cougar predation rates from GPS location clusters. J Wildl Manage 67:307–316

    Article  Google Scholar 

  4. Avenant NL, Nel JAJ (1998) Home-range use, activity, and density of caracal in relation to prey density. Afr J Ecol 36:347–359

    Article  Google Scholar 

  5. Avenant NL, Nel JAJ (2002) Among habitat variation in prey availability and use by caracal Felis caracal. Mamm Biol 67:18–33. https://doi.org/10.1078/1616-5047-00002

  6. Bacon MM, Becic GM, Epp MT, Boyce MS (2011) Do GPS clusters really work? Carnivore diet from scat analysis and GPS telemetry methods. Wildl Soc Bull 35:409–415. https://doi.org/10.1002/wsb.85

    Article  Google Scholar 

  7. Balme GA, le Roex N, Rogan MS, Hunter LTB (2019) Ecological opportunity drives individual dietary specialization in leopards. J Anim Ecol 1–12. https://doi.org/10.1111/1365-2656.13109

  8. Bateman PW, Fleming PA (2012) Big city life: carnivores in urban environments. J Zool 287:1–23. https://doi.org/10.1111/j.1469-7998.2011.00887.x

    Article  Google Scholar 

  9. Benson JF, Sikich JA, Riley SPD (2016) Individual and population level resource selection patterns of mountain lions preying on mule deer along an urban-wildland gradient. PLoS One 11:1–16. https://doi.org/10.1371/journal.pone.0158006

    CAS  Article  Google Scholar 

  10. Bevins SN, Carver S, Boydston EE et al (2012) Three pathogens in sympatric populations of pumas, bobcats, and domestic cats: implications for infectious disease transmission. PLoS One 7:e31403

    CAS  Article  Google Scholar 

  11. Bloom S (1981) Similarity indices in community studies: potential pitfalls. Mar Ecol Prog Ser 5:125–128. https://doi.org/10.3354/meps005125

    Article  Google Scholar 

  12. Boyles E, Nielsen CK (2017) Bioaccumulation of PCBs in a wild North American felid. Bull Environ Contam Toxicol 98:71–75. https://doi.org/10.1007/s00128-016-1947-8

    CAS  Article  PubMed  Google Scholar 

  13. Braczkowski A, Watson L, Coulson D et al (2012) The diet of caracal, Caracal caracal, in two areas of the southern Cape, South Africa as determined by scat analysis. South African J Wildl Res 42:111–116

    Article  Google Scholar 

  14. Bradley CA, Altizer S (2007) Urbanization and the ecology of wildlife diseases. Trends Ecol Evol 22:95–102

    Article  Google Scholar 

  15. Carver S, Bevins SN, Lappin MR et al (2015) Pathogen exposure varies widely among sympatric populations of wild and domestic felids across the United States. Ecol Appl

  16. Chakrabarti S, Jhala YV, Dutta S et al (2016) Adding constraints to predation through allometric relation of scats to consumption. J Anim Ecol 85:660–670. https://doi.org/10.1111/1365-2656.12508

    Article  PubMed  Google Scholar 

  17. Contesse P, Hegglin D, Gloor S et al (2004) The diet of urban foxes (Vulpes vulpes) and the availability of anthropogenic food in the city of Zurich, Switzerland. Mamm Biol 69:81–95

    Article  Google Scholar 

  18. Crooks KR (2002) Relative sensitivites of mammalian carnivores to habitat fragmentation. Conserv Biol 16:488–502

    Article  Google Scholar 

  19. Curtis BA, Perrin MR (1979) Food preferences of the vlei rat (Otomys irroratus) and the four-striped mouse (Rhabdomys pumilio). South African J Zool 14:224–229. https://doi.org/10.1080/02541858.1979.11447675

    Article  Google Scholar 

  20. De Barba M, Miquel C, Boyer F et al (2014) DNA metabarcoding multiplexing and validation of data accuracy for diet assessment: Application to omnivorous diet. Mol Ecol Resour 14:306–323. https://doi.org/10.1111/1755-0998.12188

    CAS  Article  PubMed  Google Scholar 

  21. DeNiro MJ, Epstein S (1978) Influence of diet on the distribution of carbon isotopes in animals. Geochim Cosmochim Acta 42:495–506. https://doi.org/10.1016/0016-7037(78)90199-0

    CAS  Article  Google Scholar 

  22. Drouilly M, Nattrass N, O’Riain MJ (2019) Global positioning system location clusters vs. scats: comparing dietary estimates to determine mesopredator diet in a conflict framework. J Zool 1–12. https://doi.org/10.1111/jzo.12737

  23. Drouilly M, Nattrass N, O’Riain MJ (2017) Dietary niche relationships among predators on farmland and a protected area. J Wildl Manage 1–12. https://doi.org/10.1002/jwmg.21407

  24. Elbroch LM, Lowrey B, Wittmer HU (2017) The importance of fieldwork over predictive modeling in quantifying predation events of carnivores marked with GPS technology. J Mammal 99:223–232. https://doi.org/10.1093/jmammal/gyx176

    Article  Google Scholar 

  25. Elbroch M (2003) Mammal tracks & sign: a guide to North American species. Stackpole Books, Mechanicsburg

    Google Scholar 

  26. Farrell LE, Roman J, Sunquist ME (2000) Dietary separation of sympatric carnivores identified by molecular analysis of scats. Mol Ecol 9:1583–1590

    CAS  Article  Google Scholar 

  27. Fedriani JM, Fuller TK, Sauvajot RM (2001) Does availability of anthropogenic food enhance densities of omnivorous mammals? An example with coyotes in southern California. Ecography 24:325–331. https://doi.org/10.1111/j.1600-0587.2001.tb00205.x

    Article  Google Scholar 

  28. Floyd TJ, Mech LD, Jordan PA (1978) Relating wolf scat content to prey consumed. J Wildl Manage 42:528–532

    Article  Google Scholar 

  29. Forsyth GG, Van Wilgen BW (2008) The recent fire history of the Table Mountain National Park and implications for fire management. Koedoe 50:3–9. https://doi.org/10.4102/koedoe.v50i1.134

    Article  Google Scholar 

  30. Funston PJ, Mills MGL, Biggs HC, Richardson PRK (1998) Hunting by male lions: ecological influences and socioecological implications. Anim Behav 56:1333–1345

    CAS  Article  Google Scholar 

  31. Grobler JH (1981) Feeding behaviour of the caracal Felis caracal Schreber 1776 in the Mountain Zebra National Park. South African J Zool 16:259–262. https://doi.org/10.1080/02541858.1981.11447764

    Article  Google Scholar 

  32. Hayward MW, Henschel P, O’Brien J et al (2006) Prey preferences of the leopard (Panthera pardus). J Zool 270:298–313. https://doi.org/10.1111/j.1469-7998.2006.00139.x

    Article  Google Scholar 

  33. Hayward MW, Kerley GIH (2005) Prey preferences of the lion (Panthera leo). J Zool 267:309–322. https://doi.org/10.1017/S0952836905007508

    Article  Google Scholar 

  34. Hockey P, Dean W, Ryan P (eds) (2005) Robert’s Birds of South Africa, 7th edn. John Voelker Bird Book Fund

  35. Inskip C, Zimmermann A (2009) Human-felid conflict: a review of patterns and priorities worldwide. Oryx 43:18. https://doi.org/10.1017/S003060530899030X

    Article  Google Scholar 

  36. Jansen AC, Leslie AJ, Cristescu B et al (2019) Determining the diet of an African mesocarnivore, the caracal: scat or GPS cluster analysis? Wildlife Biol 2019:. https://doi.org/10.2981/wlb.00579

  37. Jooste E, Nielsen CK, Chen D (2013) Using terrestrial mammalian carnivores for global contaminant monitoring. Integr Environ Assess Manag 9:343. https://doi.org/10.1002/ieam.1416

    Article  Google Scholar 

  38. Kays R, Crofoot MC, Jetz W, Wikelski M (2015) Terrestrial animal tracking as an eye on life and planet. Science (80-) 348:. https://doi.org/10.1126/science.aaa2478

  39. Kindschuh SR, Cain JW, Daniel D, Peyton MA (2016) Efficacy of GPS cluster analysis for predicting carnivory sites of a wide-ranging omnivore: The American black bear. Ecosphere 7:1–17. https://doi.org/10.1002/ecs2.1513

    Article  Google Scholar 

  40. Klare U, Kamler JF, MacDonald DW (2011) A comparison and critique of different scat-analysis methods for determining carnivore diet. Mamm Rev 41:294–312. https://doi.org/10.1111/j.1365-2907.2011.00183.x

    Article  Google Scholar 

  41. Knopff KH, Knopff AA, Warren MB, Boyce MS (2009) Evaluating global positioning system telemetry techniques for estimating cougar predation parameters. J Wildl Manage 73:586–597. https://doi.org/10.2193/2008-294

    Article  Google Scholar 

  42. LaPoint S, Balkenhol N, Hale J et al (2015) Ecological connectivity research in urban areas. Funct Ecol 29:868–878. https://doi.org/10.1111/1365-2435.12489

    Article  Google Scholar 

  43. Litvaitis JA (2000) Investigating food habits of terrestrial vertebrates. In: Boitani L, Fuller TK (eds) Research Techniques in Animal Ecology: Controversies and Consequences. Columbia University Press, pp 165–109

  44. Lockie JD (1959) The estimation of the food of foxes. J Wildl Manage 23:224–227. https://doi.org/10.2307/3797647

    Article  Google Scholar 

  45. Lowry H, Lill A, Wong BBM (2013) Behavioural responses of wildlife to urban environments. Biol Rev 88:537–549. https://doi.org/10.1111/brv.12012

    Article  PubMed  Google Scholar 

  46. MacCracken JG (1982) Coyote foods in a southern California. Wildl Soc Bull 10:280–281

    Google Scholar 

  47. Manly BFJ, McDonald LL, Thomas DL et al (2002) Resource selection by animals: statistical design and analysis for field studies, 2nd edn. Springer Science & Business Media, Berlin

    Google Scholar 

  48. Marker LL, Muntifering JR, Dickman AJ et al (2003) Quantifying prey preferences of free-ranging Namibian cheetahs. South African J Wildl Res 33:43–53

    Google Scholar 

  49. Martins Q, Horsnell WGC, Titus W et al (2011) Diet determination of the Cape Mountain leopards using global positioning system location clusters and scat analysis. J Zool 283:81–87. https://doi.org/10.1111/j.1469-7998.2010.00757.x

    Article  Google Scholar 

  50. Marucco F, Pletscher DH, Boitani L, Pletscher H (2008) Accuracy of scat sampling for carnivore diet analysis: wolves in the Alps as a case study. J Mammology 89:665–673. https://doi.org/10.1644/07-MAMM-A-005R3.1

    Article  Google Scholar 

  51. McCann NP, Zollner PA, Gilbert JH (2018) Activity of fishers at multiple temporal scales. J Mammal 1545–1542. https://doi.org/10.1093/jmammal/gyy160

  52. McKinney ML (2002) Urbanization, biodiversity and conservation. Bioscience 52:883–890

    Article  Google Scholar 

  53. McPherson SC, Brown M, Downs CT (2016) Diet of the crowned eagle (Stephanoaetus coronatus) in an urban landscape: potential for human-wildlife conflict? Urban Ecosyst 19:383–396. https://doi.org/10.1007/s11252-015-0500-6

    Article  Google Scholar 

  54. Melville HIAS, Bothma J, du P, Mills MGL (2004) Prey selection by caracal in the Kgalagadi Transfrontier Park. South African J Wildl Res 34:67–75

    Google Scholar 

  55. Milton S (2004) Grasses as invasive alien plants in South Africa. S Afr J Sci 100:69–75

    Google Scholar 

  56. Minnie L, Gaylard A, Kerley GIH (2016) Compensatory life-history responses of a mesopredator may undermine carnivore management efforts. J Appl Ecol 53:379–387. https://doi.org/10.1111/1365-2664.12581

    Article  Google Scholar 

  57. Monadjem A, Taylor PJ, Denys C, Cotterill FPD (2015) Rodents of Sub-Saharan Africa: A biogeographic and taxonomic synthesis. Walter de Gruyter GmbH & Co KG, Berlin

    Book  Google Scholar 

  58. Morey PS, Gese EM, Gehrt S (2007) Spatial and temporal variation in the diet of coyotes in the Chicago metropolitan area. Am Midl Nat 158:147–161

    Article  Google Scholar 

  59. Morin DJ, Higdon SD, Lonsinger RC et al (2019) Comparing methods of estimating carnivore diets with uncertainty and imperfect detection. Wildl Soc Bull 1–10. https://doi.org/10.1002/wsb.1021

  60. Moss WE, Alldredge MW, Pauli JN (2016) Quantifying risk and resource use for a large carnivore in an expanding urban-wildland interface. J Appl Ecol 53:371–378. https://doi.org/10.1111/1365-2664.12563

    Article  Google Scholar 

  61. Myers N, Mittermeier RA, Mittermeier CG et al (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858. https://doi.org/10.1038/35002501

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  62. Newsome SD, Garbe HM, Wilson EC, Gehrt SD (2015a) Individual variation in anthropogenic resource use in an urban carnivore. Oecologia 178:115–128. https://doi.org/10.1007/s00442-014-3205-2

    Article  PubMed  Google Scholar 

  63. Newsome TM, Dellinger JA, Pavey CR et al (2015b) The ecological effects of providing resource subsidies to predators. Glob Ecol Biogeogr 24:1–11. https://doi.org/10.1111/geb.12236

    Article  Google Scholar 

  64. Norton PM, Lawson AB, Henley SR, Avery G (1986) Prey of leopard in four mountain areas of the south-western Cape province. South African J Wildl Res 16:47–52

    Google Scholar 

  65. Oksanen J, Blanchet FG, Kindt R et al (2013) vegan: community ecology package

  66. Ordeñana MA, Crooks KR, Boydston EE et al (2010) Effects of urbanization on carnivore species distribution and richness. J Mammal 91:1322–1331. https://doi.org/10.1644/09-MAMM-A-312.1

    Article  Google Scholar 

  67. Ott T, Kerley GIH, Boshoff AF (2007) Preliminary observations on the diet of leopards (Panthera pardus) from a conservation area and adjacent rangelands in the Baviaanskloof region, South Africa. African Zool 42:31–37. https://doi.org/10.3377/1562-7020(2007)42[31:POOTDO]2.0.CO;2

  68. Palmer R, Fairall N (1988) Caracal and African wild cat diet in the Karoo National Park and the implications thereof for hyrax. South African J Wildl Res 18:30–34

    Google Scholar 

  69. Perilli MLL, Lima F, Rodrigues FHG, Cavalcanti SMC (2016) Can scat analysis describe the feeding habits of big cats? A case study with jaguars (Panthera onca) in Southern Pantanal, Brazil. PLoS One 11:. https://doi.org/10.1371/journal.pone.0151814

  70. Pitman RT, Mulvaney J, Ramsay PM et al (2014) Global Positioning System-located kills and faecal samples: a comparison of leopard dietary estimates. J Zool 292:18–24. https://doi.org/10.1111/jzo.12078

    Article  Google Scholar 

  71. Podgorski T, Schmidt K, Kowalczyk R, Gulczynska A (2008) Microhabitat selection by Eurasian lynx and its implications for species conservation. Acta Theriol (Warsz) 53:97–110. https://doi.org/10.1007/BF03194243

    Article  Google Scholar 

  72. Prugh LR, Stoner CJ, Epps CW et al (2009) The rise of the mesopredator. Bioscience 59:779–791. https://doi.org/10.1525/bio.2009.59.9.9

    Article  Google Scholar 

  73. Python Software Foundation Python Language Reference (n.d.) http://www.python.org

  74. Quinn T (1997) Coyote (Canis latrans) habitat selection in urban areas of western Washington via analysis of routine movements. Northwest Sci 71:289–297

  75. R Core Team (2018) R: A language and environment for statistical computing. https://www.r-project.org/

  76. Rebelo AG, Holmes PM, Dorse C, Wood J (2011) Impacts of urbanization in a biodiversity hotspot: conservation challenges in Metropolitan Cape Town. South African J Bot 77:20–35. https://doi.org/10.1016/j.sajb.2010.04.006

    Article  Google Scholar 

  77. Redford KH, Coppolillo P, Sanderson EW et al (2003) Mapping the conservation landscape. Conserv Biol 17:116–131

    Article  Google Scholar 

  78. Reinecke MK, Pigot AL, King JM (2008) Spontaneous succession of riparian fynbos: Is unassisted recovery a viable restoration strategy? South African J Bot 74:412–420. https://doi.org/10.1016/j.sajb.2008.01.171

    Article  Google Scholar 

  79. Riley SPD, Boydston EE, Crooks KR, Lyren LM (2010) Bobcats (Lynx rufus). In: Gehrt SD, Riley SPD, Cypher BL (eds) Urban Carnivores: ecology, conflict, and conservation. Johns Hopkins University Press, Baltimore, pp 121–138

    Google Scholar 

  80. Riley SPD, Bromley C, Poppenga RH et al (2007) Anticoagulant exposure and notoedric mange in bobcats and mountain lions in urban southern California. J Wildl Manage 71:1874–1884. https://doi.org/10.2193/2005-615

    Article  Google Scholar 

  81. Riley SPD, Foley J, Chomel B (2004) Exposure to feline and canine pathogens in bobcats and gray foxes in urban and rural zones of a national park in California. J Wildl Dis 40:11–22

    Article  Google Scholar 

  82. Rodríguez-Estival J, Mateo R (2019) Exposure to anthropogenic chemicals in wild carnivores: a silent conservation threat demanding long-term surveillance. Curr Opin Environ Sci Heal. https://doi.org/10.1016/j.coesh.2019.06.002

    Article  Google Scholar 

  83. Roemer GW, Gompper ME, Van Valkenburgh B (2009) The ecological role of the mammalian mesocarnivore. Bioscience 59:165–173. https://doi.org/10.1525/bio.2009.59.2.9

    Article  Google Scholar 

  84. Sand H, Zimmermann B, Wabakken P et al (2005) Using GPS technology and GIS cluster analyses to estimate kill rates in wolf-ungulate ecosystems. Wildl Soc Bull 33:914–925. https://doi.org/10.2193/0091-7648(2005)33[914:UGTAGC]2.0.CO;2

  85. Sanderson EW, Redford KH, Vedder A et al (2002) A conceptual model for conservation planning based on landscape species requirements. Landsc Urban Plan 58:41–56. https://doi.org/10.1016/S0169-2046(01)00231-6

    Article  Google Scholar 

  86. Schroeder MA, Robb LA, Braun C (2005) Criteria for gender and age. In: Silvy NJ (ed) Techniques for Wildlife Investigations and Management. The Wildlife Society, Bethesda, pp 303–338

    Google Scholar 

  87. Sergio F, Newton I, Marchesi L, Pedrini P (2006) Ecologically justified charisma: preservation of top predators delivers biodiversity conservation. J Appl Ecol 43:1049–1055. https://doi.org/10.1111/j.1365-2664.2006.01218.x

    Article  Google Scholar 

  88. Serieys LEK, Armenta TC, Moriarty JG et al (2015) Anticoagulant rodenticides in urban bobcats: exposure, risk factors and potential effects based on a 16-year study. Ecotoxicology 24:844–862

    CAS  Article  Google Scholar 

  89. Serieys LEK, Bishop J, Okes N et al (2019) Widespread anticoagulant poison exposure in predators in a rapidly growing South African city. Sci Total Environ 666:581–590. https://doi.org/10.1016/j.scitotenv.2019.02.122

    CAS  Article  PubMed  Google Scholar 

  90. Serieys LEK, Wilmers C (2019) Coyote Valley bobcat habitat preference and connectivity report. Santa Cruz, California

    Google Scholar 

  91. Shehzad W, Riaz T, Nawaz MA et al (2012) Carnivore diet analysis based on next-generation sequencing: Application to the leopard cat (Prionailurus bengalensis) in Pakistan. Mol Ecol 21:1951–1965. https://doi.org/10.1111/j.1365-294X.2011.05424.x

    CAS  Article  PubMed  Google Scholar 

  92. Shochat E, Warren PS, Faeth SH et al (2006) From patterns to emerging processes in mechanistic urban ecology. Trends Ecol Evol 21:186–191. https://doi.org/10.1016/j.tree.2005.11.019

    Article  PubMed  Google Scholar 

  93. Skinner JD, Chimimba CT (2005) The mammals of the southern African subregion. Cambridge University Press, Cape Town

    Book  Google Scholar 

  94. Smith JA, Donadio E, Pauli JN et al (2019) Habitat complexity mediates the predator-prey space race. Ecology 00:e02724. https://doi.org/10.1002/ecy.2724

  95. Smith JA, Wang Y, Wilmers CC (2016) Spatial characteristics of residential development shift large carnivore prey habits. J Wildl Manage. https://doi.org/10.1002/jwmg.21098

    Article  Google Scholar 

  96. Soulsbury CD, White PCL (2015) Human–wildlife interactions in urban areas: a review of conflicts, benefits and opportunities. Wildl Res 3330. https://doi.org/10.1071/WR14229

  97. Stuart CT (1981) Notes on the mammalian carnivores of the Cape Province, South Africa. Bontebok 1:1–58. https://doi.org/10.1017/CBO9781107415324.004

    Article  Google Scholar 

  98. Stuart CT, Hickman GC (1991) Prey of caracal Felis caracal in two areas of Cape Province, South Africa. J African Zool 105:373–381

    Google Scholar 

  99. Suri J, Sumasgutner P, Hellard É et al (2017) Stability in prey abundance may buffer Black Sparrowhawks Accipiter melanoleucus from health impacts of urbanization. Ibis (Lond 1859) 159:38–54. https://doi.org/10.1111/ibi.12422

    Article  Google Scholar 

  100. Svoboda NJ, Belant JL, Beyer DE et al (2013) Identifying bobcat Lynx rufus kill sites using a global positioning system. Wildlife Biol 19:78–86. https://doi.org/10.2981/12-031

    Article  Google Scholar 

  101. Taberlet P, Waits LP, Luikart G (1999) Noninvasive genetic sampling: look before you leap. Trends Ecol Evol 14:323–327

    CAS  Article  Google Scholar 

  102. Tambling CJ, Laurence SD, Bellan SE et al (2012) Estimating carnivoran diets using a combination of carcass observations and scats from GPS clusters. J Zool 286:102–109. https://doi.org/10.1016/j.pestbp.2011.02.012.Investigations

    CAS  Article  Google Scholar 

  103. Underwood EC, Viers JH, Klausmeyer KR et al (2009) Threats and biodiversity in the mediterranean biome. Divers Distrib 15:188–197. https://doi.org/10.1111/j.1472-4642.2008.00518.x

    Article  Google Scholar 

  104. Vogt K, Vimercati E, Ryser A et al (2018) Suitability of GPS telemetry for studying the predation of Eurasian lynx on small- and medium-sized prey animals in the Northwestern Swiss Alps. Eur J Wildl Res 1–11. https://doi.org/10.1007/s10344-018-1225-7

  105. Wallach AD, Izhaki I, Toms JD et al (2015) What is an apex predator? Oikos 124:1453–1461. https://doi.org/10.1111/oik.01977

    Article  Google Scholar 

  106. Widdows C, Downs CT (2018) Genets in the city: community observations and perceptions of large-spotted genets (Genetta tigrina) in an urban environment. Urban Ecosyst 21:357–367. https://doi.org/10.1007/s11252-017-0722-x

    Article  Google Scholar 

  107. Widdows CD, Downs CT (2015) A genet drive-through: are large spotted genets using urban areas for “fast food”? a dietary analysis. Urban Ecosyst 18:907–920. https://doi.org/10.1007/s11252-015-0438-8

    Article  Google Scholar 

  108. Yelenik SG, Stock WD, Richardson DM (2004) Ecosystem level impacts of invasive Acacia saligna in the South African fynbos. Restor Ecol 12:44–51. https://doi.org/10.1111/j.1061-2971.2004.00289.x

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank the Claude Leon Foundation, Cape Leopard Trust, the University of Cape Town, University of California, Santa Cruz, Botanica Wines, Stellenbosch University, the National Research Foundation (NRF) and the University of Cape Town through the Institute for Communities and Wildlife in Africa (iCWild), Experiment, and numerous private donors for funding. We also thank the many volunteers who investigated GPS clusters and helped process scat samples; M. Drouilly and Dr G. K. H. Mann for technical advice on scat analysis, and J. Suri for assistance with identifying avian prey.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Gabriella R. M. Leighton.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

The original version of this article was revised: Figure 1 caption was incorrect and a chinese character was mistakenly added (舃) in Table 2 under "Scratching posts" for "Juvenile males'.

Electronic supplementary material

ESM 1

(DOCX 555 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Leighton, G.R.M., Bishop, J.M., O’Riain, M.J. et al. An integrated dietary assessment increases feeding event detection in an urban carnivore. Urban Ecosyst 23, 569–583 (2020). https://doi.org/10.1007/s11252-020-00946-y

Download citation

Keywords

  • urbanisation
  • Caracal caracal
  • scat
  • carnivore
  • GPS cluster analysis
  • methods