Skip to main content

Floral abundance and richness drive beneficial arthropod conservation and biological control on golf courses

Abstract

Golf courses are among the largest, most ubiquitous highly maintained urban green spaces in the U.S. Although their primary function is recreation, a large portion of golf course land is not actively in use, which presents opportunities to create more ecologically functional areas. Golf courses around the world are converting these out-of-play areas to alternative habitats, but few do so using evidence that maximizes their benefit. Previous studies have investigated effects of conservation plantings on golf courses, but none have isolated the biological control services of flying natural enemies and few investigated effects on native bees. In this study, we ask if converting out-of-play maintained turfgrass areas into wildflower habitats increases bee and insect natural enemy abundance and diversity and their associated ecosystem services. We created wildflower habitats at two levels of species richness and compared their effects on insects within and around them to turfgrass plots. To quantify effects on biological control, we deployed sentinel prey Spodoptera frugiperda larvae, excluding ground-dwelling predators. As predicted, we found that converting turfgrasses to flowering habitats increased bees and natural enemies on golf courses. However, high wildflower species richness was an important factor in promoting native bees and natural enemies. We found that wildflower habitats, particularly those with highest floral richness, increased biological control rates in adjacent turfgrass areas by up to 50% compared to turfgrass controls. Our results indicate that purposefully designed conservation plantings on golf courses can help support insect pollinators while also augmenting biological control of turfgrass pests.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Abraham CM, Held DW, Wheeler C (2010) Seasonal and diurnal activity of Larra bicolor (Hymenoptera: Crabronidae) and potential ornamental plants as nectar sources. Applied Turfgrass Science 7(1):0. https://doi.org/10.1094/ats-2010-0312-01-rs

    Article  Google Scholar 

  2. Ahern J (2011) From fail-safe to safe-to-fail: Sustainability and resilience in the new urban world. Landsc Urban Plan 100(4):341–343. https://doi.org/10.1016/j.landurbplan.2011.02.021

    Article  Google Scholar 

  3. Altieri MA (1999) The ecological role of biodiversity in agroecosystems. Agric Ecosyst Environ 74(1–3):19–31

    Article  Google Scholar 

  4. Arevalo HA, Frank JH (2005) Nectar sources for Larra bicolor (Hymenoptera: Sphecidae), a parasitoid of Scapteriscus mole crickets (Orthoptera: Gryllotalpidae), in northern Florida. The Florida Entomologist 88(2):146–151

    Article  Google Scholar 

  5. Ascher JS, Pickering J (2018) Discover Life bee species guide and world checklist (Hymenoptera: Apoidea: Anthophila). http://www.discoverlife.org/mp/20q?guide=Apoidea_species

  6. Baldi A (2003) Using higher taxa as surrogates of species richness: A study based on 3700 Coleoptera, Diptera, and Acari species in Central-Hungarian reserves. Basic Appl Ecol 4:589–593

    Article  Google Scholar 

  7. Ballare KM, Neff JL, Ruppel R, Jha S (2019) Multi-scalar drivers of biodiversity: local management mediates wild bee community response to regional urbanization. Ecol Appl 29(3). https://doi.org/10.1002/eap.1869

  8. Biesmeijer J, Roberts S, Reemer M, Ohlemuller R, Edwards M, Peeters T, Schaffers A, Potts SG, Kleukers R, Thomas C, Settele J, Kunin W (2006) Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. Science 313

    CAS  Article  Google Scholar 

  9. Blaauw BR, Isaacs R (2012) Larger wildflower plantings increase natural enemy density, diversity, and biological control of sentinel prey, without increasing herbivore density. Ecol Entomol 37(5):386–394. https://doi.org/10.1111/j.1365-2311.2012.01376.x

    Article  Google Scholar 

  10. Blaauw BR, Isaacs R (2015) Wildflower plantings enhance the abundance of natural enemies and their services in adjacent blueberry fields. Biol Control 91:94–103. https://doi.org/10.1016/j.biocontrol.2015.08.003

    Article  Google Scholar 

  11. Bottrell DG, Barbosa P, Gould F (1998) Manipulating natural enemies by plant variety selection and modification: a realistic strategy? Annu Rev Entomol 43(1):347–367

    CAS  Article  Google Scholar 

  12. Braman SK, Pendley AF, Corley W (2002) Influence of commercially available wildflower mixes on beneficial arthropod abundance and predation in turfgrass. Environ Entomol 31(3):564–572. https://doi.org/10.1603/0046-225x-31.3.564

    Article  Google Scholar 

  13. Burkman CE, Gardiner MM (2014) Urban greenspace composition and landscape context influence natural enemy community composition and function. Biol Control 75:58–67. https://doi.org/10.1016/j.biocontrol.2014.02.015

    Article  Google Scholar 

  14. Campbell JW, Smithers C, Irvin A, Kimmel CB, Stanley-Stahr C, Daniels JC, Ellis JD (2017) Trap nesting wasps and bees in agriculture: A comparison of sown wildflower and fallow plots in Florida. Insects 8(4). https://doi.org/10.3390/insects8040107

    Article  Google Scholar 

  15. Carpenter JM (1986) The genus Pachodynerus in North America (Hymenoptera: Vespidae: Eumeninae). Proceedings of the Entomological Society of Washington 88

  16. Colding J, Folke C (2009) The role of golf courses in biodiversity conservation and ecosystem management. Ecosystems 12(2):191–206. https://doi.org/10.1007/s10021-008-9217-1

    Article  Google Scholar 

  17. Colding J, Lundberg J, Folke C (2006) Incorporating green-area user groups in urban ecosystem management. Ambio 35(5):237–244. https://doi.org/10.1579/05-a-098r.1

    Article  PubMed  Google Scholar 

  18. Dale AG, Frank SD (2018) Urban plants and climate drive unique arthropod interactions with unpredictable consequences. Curr Opin Insect Sci 29:27–33. https://doi.org/10.1016/j.cois.2018.06.001

    Article  PubMed  Google Scholar 

  19. Davies ZG, Edmondson JL, Heinemeyer A, Leake JR, Gaston KJ (2011) Mapping an urban ecosystem service: quantifying above-ground carbon storage at a city-wide scale. J Appl Ecol 48(5):1125–1134

    CAS  Article  Google Scholar 

  20. Dimoudi A, Nikolopoulou M (2003) Vegetation in the urban environment: microclimatic analysis and benefits. Energ Buildings 35(1):69–76

    Article  Google Scholar 

  21. Dobbs EK, Potter DA (2015) Forging natural links with golf courses for pollinator-related conservation. Am Entomol 61(2):116–123

    Article  Google Scholar 

  22. Dobbs EK, Potter DA (2016) Naturalized habitat on golf courses: source or sink for natural enemies and conservation biological control? Urban Ecosyst 19:899–914

    Article  Google Scholar 

  23. Fortel L, Henry M, Guilbaud L, Guirao AL, Kuhlmann M, Mouret H, Rollin O, Vaissiere BE (2014) Decreasing abundance, increasing diversity and changing structure of the wild bee community (Hymenoptera: Anthophila) along an urbanization gradient. PLoS One 9(8):e104679. https://doi.org/10.1371/journal.pone.0104679

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. Frank SD, Shrewsbury PM (2004) Effect of conservation strips on the abundance and distribution of natural enemies and predation of Agrotis ipsilon (Lepidoptera: Noctuidae) on golf course fairways. Environ Entomol 33(6):1662–1672. https://doi.org/10.1603/0046-225x-33.6.1662

    Article  Google Scholar 

  25. Gardiner MM, Prajzner SP, Burkman CE, Albro S, Grewal PS (2013) Vacant land conversion to community gardens: influences on generalist arthropod predators and biocontrol services in urban greenspaces. Urban Ecosyst 17(1):101–122. https://doi.org/10.1007/s11252-013-0303-6

    Article  Google Scholar 

  26. Gathmann A, Greiler HJ, Tscharntke T (1994) Trap-nesting bees and wasps colonizing set-aside fields: succession and body size, management by cutting and sowing. Oecologia 98:8–14

    CAS  Article  Google Scholar 

  27. Gels JA, Held DW, Potter DA (2002) Hazards of insecticides to the bumble bees Bombus impatiens (Hymenoptera: Apidae) foraging on flowering white clover in turf. J Econ Entomol 95(4):722–728. https://doi.org/10.1603/0022-0493-95.4.722

    CAS  Article  PubMed  Google Scholar 

  28. Goddard MA, Dougill AJ, Benton TG (2010) Scaling up from gardens: biodiversity conservation in urban environments. Trends Ecol Evol 25(2):90–98. https://doi.org/10.1016/j.tree.2009.07.016

    Article  PubMed  Google Scholar 

  29. Goulson D, Nicholls E, Botias C, Rotheray EL (2015) Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science 347(6229):1255957. https://doi.org/10.1126/science.1255957

    CAS  Article  PubMed  Google Scholar 

  30. Gross P, Eckenrode T (2012) Turf reduction template: A guideline for reducing turf acreage while maintaining golf course quality. USGA Green Section Record 50:1–5

    Google Scholar 

  31. Hall DM, Camilo GR, Tonietto RK, Ollerton J, Ahrne K, Arduser M, Ascher JS, Baldock KC, Fowler R, Frankie G, Goulson D, Gunnarsson B, Hanley ME, Jackson JI, Langellotto G, Lowenstein D, Minor ES, Philpott SM, Potts SG, Sirohi MH, Spevak EM, Stone GN, Threlfall CG (2017) The city as a refuge for insect pollinators. Conserv Biol 31(1):24–29. https://doi.org/10.1111/cobi.12840

    Article  PubMed  Google Scholar 

  32. Hamblin AL, Youngsteadt E, Lopez-Uribe MM, Frank SD (2017) Physiological thermal limits predict differential responses of bees to urban heat-island effects. Biol Lett 13(6). https://doi.org/10.1098/rsbl.2017.0125

    Article  Google Scholar 

  33. Held DW, Potter DA (2012) Prospects for managing turfgrass pests with reduced chemical inputs. Annu Rev Entomol 57:329–354. https://doi.org/10.1146/annurev-ento-120710-100542

    CAS  Article  PubMed  Google Scholar 

  34. Hodges AW, Stevens TJ (2010) Economic Contributions of the Turfgrass Industry in Florida. University of Florida, Final Project Report to the Florida Turfgrass Association

  35. Jha S, Kremen C (2013) Resource diversity and landscape-level homogeneity drive native bee foraging. Proc Natl Acad Sci USA 110(2):555–558. https://doi.org/10.1073/pnas.1208682110

    Article  PubMed  Google Scholar 

  36. Kremen C, Williams NM, Aizen MA, Gemmill-Herren B, LeBuhn G, Minckley R, Packer L, Potts SG, Roulston T, Steffan-Dewenter I, Vazquez DP, Winfree R, Adams L, Crone EE, Greenleaf SS, Keitt TH, Klein AM, Regetz J, Ricketts TH (2007) Pollination and other ecosystem services produced by mobile organisms: a conceptual framework for the effects of land-use change. Ecol Lett 10(4):299–314. https://doi.org/10.1111/j.1461-0248.2007.01018.x

    Article  PubMed  Google Scholar 

  37. Krombein KV (1967) Trap-nesting wasps and bees: Life histories, nests, and associates. Publication 4670 edn. Smithsonian Press, Washington, D.C.

  38. Kunkel BA, Held DW, Potter DA (1999) Impact of halofenozide, imidacloprid, and bendiocarb on beneficial invertebrates and predatory activity in turfgrass. J Econ Entomol 92(4):922–930

    CAS  Article  Google Scholar 

  39. Larson JL, Dale A, Held D, McGraw B, Richmond DS, Wickings K, Chris Williamson R (2017) Optimizing pest management practices to conserve pollinators in turf landscapes: Current practices and future research needs. Journal of Integrated Pest Management 8 (1)

  40. Larson JL, Redmond CT, Potter DA (2012) Comparative impact of an anthranilic diamide and other insecticidal chemistries on beneficial invertebrates and ecosystem services in turfgrass. Pest Manag Sci 68(5):740–748. https://doi.org/10.1002/ps.2321

    CAS  Article  PubMed  Google Scholar 

  41. Lee AC, Maheswaran R (2011) The health benefits of urban green spaces: a review of the evidence. J Public Health 33(2):212–222. https://doi.org/10.1093/pubmed/fdq068

    CAS  Article  Google Scholar 

  42. Leong JM, Thorp RW (1999) Colour-coded sampling: the pan trap colour preferences of oligolectic and nonoligolectic bees associated with a vernal pool plant. Ecol Entomol 24:329–335

    Article  Google Scholar 

  43. López R, Potter DA (2000) Ant predation on eggs and larvae of the black cutworm (Lepidoptera: Noctuidae) and Japanese beetle (Coleoptera: Scarabaeidae) in turfgrass. Environ Entomol 29(1):116–125. https://doi.org/10.1603/0046-225x-29.1.116

    Article  Google Scholar 

  44. Losey JE, Vaughan M (2006) The economic value of ecological services provided by insects. BioScience 56(4):311–323. https://doi.org/10.1641/0006-3568(2006)56[311:TEVOES]2.0.CO;2

    Article  Google Scholar 

  45. Lyman GT, Throssell CS, Johnson ME, Stacey GA, Brown CD (2007) Golf course profile describes turfgrass, landscape, and environmental stewardship features. Appl Turfgrass Sci 4(1):1–25. https://doi.org/10.1094/ats-2007-1107-01-rs

    Article  Google Scholar 

  46. Mata L, Threlfall CG, Williams NS, Hahs AK, Malipatil M, Stork NE, Livesley SJ (2017) Conserving herbivorous and predatory insects in urban green spaces. Sci Rep 7:40970. https://doi.org/10.1038/srep40970

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  47. Mazón M (2015) Taking shortcuts to measure species diversity: parasitoid Hymenoptera subfamilies as surrogates of species richness. Biodivers Conserv 25(1):67–76. https://doi.org/10.1007/s10531-015-1029-y

    Article  Google Scholar 

  48. McKinney ML (2002) Urbanization, biodiversity, and conservation. BioScience 52(10):883–890

    Article  Google Scholar 

  49. Nagoshi RN, Meagher RL (2004) Behavior and distribution of the two fall armyworm host strains in Florida. Fla Entomol 87(4):440–449. https://doi.org/10.1653/0015-4040(2004)087[0440:Badott]2.0.Co;2

    Article  Google Scholar 

  50. Nowak DJ, Greenfield EJ (2012) Tree and impervious cover change in U.S. cities. Urban For Urban Green 11(1):21–30. https://doi.org/10.1016/j.ufug.2011.11.005

    Article  Google Scholar 

  51. Nowak DJ, Greenfield EJ, Hoehn RE, Lapoint E (2013) Carbon storage and sequestration by trees in urban and community areas of the United States. Environ Pollut 178:229–236. https://doi.org/10.1016/j.envpol.2013.03.019

    CAS  Article  PubMed  Google Scholar 

  52. Pascarella JB, Hall HG (2019) The Bees of Florida. http://entnemdept.ufl.edu/HallG/Melitto/Intro.htm

  53. Portman SL, Frank JH, McSorley R, Leppla NC (2010) Nectar-seeking and host-seeking by Larra bicolor (Hymenoptera: Crabronidae), a parasitoid of Scapteriscus mole crickets (Orthoptera: Gryllotalpidae). Environ Entomol 39(3):939–943. https://doi.org/10.1603/EN09268

    CAS  Article  PubMed  Google Scholar 

  54. Potter DA (1998) Destructive turfgrass insects: Biology, diagnosis, and control. John Wiley & Sons

  55. Potts SG, Vulliamy B, Dafni A, Ne’eman G, Willmer P (2003) Linking bees and flowers: How do floral communities structure pollinator communities. Ecology 84(10):2628–2642

    Article  Google Scholar 

  56. Potts SG, Vulliamy B, Roberts S, O’Toole C, Dafni A, Ne’eman G, Willmer P (2005) Role of nesting resources in organising diverse bee communities in a Mediterranean landscape. Ecol Entomol 30:78–85

    Article  Google Scholar 

  57. Resasco J (2019) Meta-analysis on a decade of testing corridor efficacy: What new have we learned? Curr Landsc Ecol Rep 4(3):61–69. https://doi.org/10.1007/s40823-019-00041-9

    Article  Google Scholar 

  58. Rogers ME, Potter DA (2004) Potential for sugar sprays and flowering plants to increase parasitism of white grubs (Coleoptera: Scarabaeidae) by Tiphiid Wasps (Hymenoptera: Tiphiidae). Environ Entomol 33(3):619–626

    Article  Google Scholar 

  59. Saarikivi J, Idstrom L, Venn S, Niemela J, Kotze DJ (2010) Carabid beetle assemblages associated with urban golf courses in the greater Helsinki area. Eur J Entomol 107:553–561

    Article  Google Scholar 

  60. Sánchez-Bayo F, Wyckhuys KAG (2019) Worldwide decline of the entomofauna: A review of its drivers. Biol Conserv 232:8–27. https://doi.org/10.1016/j.biocon.2019.01.020

    Article  Google Scholar 

  61. Scheid BE, Thies C, Tscharntke T (2011) Enhancing rape pollen beetle parasitism within sown flower fields along a landscape complexity gradient. Agric For Entomol 13(2):173–179. https://doi.org/10.1111/j.1461-9563.2010.00516.x

    Article  Google Scholar 

  62. Shrewsbury PM, Raupp MJ (2000) Evaluation of Components of Vegetational Texture for Predicting Azalea Lace Bug, <I>Stephanitis pyrioides</I> (Heteroptera: Tingidae), Abundance in Managed Landscapes. Environ Entomol 29(5):919–926. https://doi.org/10.1603/0046-225x-29.5.919

    Article  Google Scholar 

  63. Simpson EH (1949) Measurement of Diversity. Nature 163:688

    Article  Google Scholar 

  64. Sun R, Chen L (2017) Effects of green space dynamics on urban heat islands: Mitigation and diversification. Ecosyst Serv 23:38–46. https://doi.org/10.1016/j.ecoser.2016.11.011

    Article  Google Scholar 

  65. Tahvanainen JO, Root RB (1972) The influence of vegetational diversity on the population ecology of a specialized herbivore, Phyllotreta cruciferae (Coleoptera: Chrysomelidae). Oecologia 10:321–346

    Article  Google Scholar 

  66. Tanner RA, Gange AC (2005) Effects of golf courses on local biodiversity. Landsc Urban Plan 71(2–4):137–146. https://doi.org/10.1016/s0169-2046(04)00034-9

    Article  Google Scholar 

  67. Tscharntke T, Bommarco R, Clough Y, Crist TO, Kleijn D, Rand TA, Tylianakis JM, Sv N, Vidal S (2007) Conservation biological control and enemy diversity on a landscape scale. Biol Control 43(3):294–309. https://doi.org/10.1016/j.biocontrol.2007.08.006

    Article  Google Scholar 

  68. Vieira LC, Oliveira NG, Brewster CC, Gayubo SF (2012) Using higher taxa as surrogates of species-level data in three Portuguese protected areas: a case study on Spheciformes (Hymenoptera). Biodivers Conserv 21(13):3467–3486. https://doi.org/10.1007/s10531-012-0374-3

    Article  Google Scholar 

  69. Williams NM, Ward KL, Pope N, Isaacs R, Wilson J, May EA, Ellis J, Daniels J, Pence A, Ullmann K, Peters J (2015) Native wildflower plantings support wild bee abundance and diversity in agricultural landscapes across the United States. Ecol Appl 25(8):2119–2131

    Article  Google Scholar 

  70. Winfree R, Bartomeus I, Cariveau D (2011) Native pollinators in anthropogenic habitats. Annu Rev Ecol Evol Syst 42:1–22

    Article  Google Scholar 

Download references

Acknowledgements

We sincerely thank golf course superintendents Andrew Jorgensen, Paul Hamilton, and Asa High for their cooperation and assistance with creating these habitats on their golf courses. We thank Alex LoCastro, Bo Holliday, Lauren Webb, and Matthew Borden for their assistance with field work, data collection, and arthropod identification. We also thank an anonymous reviewer of this manuscript for thorough feedback and suggestions. Funding for this project was provided by the Everglades Chapter of the Florida Golf Course Superintendents Association, Seven Rivers Chapter of the Florida Golf Course Superintendents Association, Syngenta Crop Protection, and the University of Florida Institute of Food and Agricultural Sciences to AGD. Additional funding was awarded to AGD and GCC through the University of Florida IFAS undergraduate internship program.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Adam G. Dale.

Electronic supplementary material

Table S1

(DOCX 18 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dale, A.G., Perry, R.L., Cope, G.C. et al. Floral abundance and richness drive beneficial arthropod conservation and biological control on golf courses. Urban Ecosyst 23, 55–66 (2020). https://doi.org/10.1007/s11252-019-00907-0

Download citation

Keywords

  • Pollinators
  • Integrated pest management
  • Green space
  • Urban conservation