Functional connectivity in urban landscapes promoted by Ramphastos toco (Toco Toucan) and its implications for policy making

Abstract

The scarcity of green areas in urban landscapes hinders connectivity among sites reducing the flux of organisms and seed dispersal. Ramphastos toco is an effective plant disperser in tropical landscapes, playing an important role in conserving plant connectivity. In this study we combined two methods of landscape connectivity analysis, in a way not yet explored, to assess the potential contribution of Ramphastos toco to enhancing connectivity among urban vegetation patches. We used spatial modeling techniques to evaluate least cost routes, or those that facilitate bird movement through green urban areas, in Belo Horizonte, a city in Southeast Brazil. We also assessed the relative importance of forest patches for conserving both bird and seed dispersal fluxes using the integral index of connectivity. The resulting least cost route of greater accessibility for the species included in its course an important forest patch under environmental licensing for the construction of a residential condominium. The number of green urban areas covered by forest, of highest habitat quality for the species, summed to 155 patches. Of this total only 5.2% were relevant for regional connectivity, while the four most important patches are targeted by the city’s expansion plans. Ramphastos toco is an effective connector for tropical green urban areas given its adaptability, wide range of movement and seed dispersal effectiveness. We emphasize the need for incorporating ecological knowledge and the prioritization of green areas into city planning, since current expansion projects jeopardize forest patches that are crucial to the functional connectivity of the urban landscape.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. ALMG (2016) Lei 21.965. Lei revoga criação da APA Fazenda Capitão Eduardo (Law 21.965). Assembleia Legislativa de Minas Gerais

  2. Antrop M (2004) Landscape change and the urbanization process in Europe. Landsc Urban Plan 67:9–26

    Article  Google Scholar 

  3. Arifin HS, Nakagoshi N (2011) Landscape ecology and urban biodiversity in tropical Indonesian cities. Landsc Ecol Eng 7:33–43. https://doi.org/10.1007/s11355-010-0145-9

    Article  Google Scholar 

  4. Auffret AG, Plue J, Cousins SAO (2015) The spatial and temporal components of functional connectivity in fragmented landscapes. Ambio 44:51–59. https://doi.org/10.1007/s13280-014-0588-6

    Article  PubMed Central  Google Scholar 

  5. Ayram CAC, Mendoza ME, Etter A, Salicrup DRP (2016) Habitat connectivity in biodiversity conservation: a review of recent studies and applications. Prog Phys Geogr 40:1–32. https://doi.org/10.1177/0309133315598713

    Article  Google Scholar 

  6. Baguette M, Van Dyck H (2007) Landscape connectivity and animal behavior: functional grain as a key determinant for dispersal. Landsc Ecol 22:1117–1129. https://doi.org/10.1007/s10980-007-9108-4

    Article  Google Scholar 

  7. Bairros de Belo Horizonte (2015) Região do Isidoro. http://bairrosdebelohorizonte.webnode.com.br/região do izidoro−/. Accessed 1 Jan 2016

  8. Barth BJ, Ian FitzGibbon S, Stuart Wilson R (2015) New urban developments that retain more remnant trees have greater bird diversity. Landsc Urban Plan 136:122–129. https://doi.org/10.1016/j.landurbplan.2014.11.003

    Article  Google Scholar 

  9. Bartuszevige AM, Gorchov DL (2006) Avian seed dispersal of an invasive shrub. Biol Invasions 8:1013–1022. https://doi.org/10.1007/s10530-005-3634-2

    Article  Google Scholar 

  10. Böhning-Gaese K (2007) Do seed dispersers matter? A biogeographical approach. In: Dennis AJ, Schupp EW, Green RA, Westcott DA (eds) . Seed Dispersal: Theory and its Application in a Changing World, CAB International, pp 545–560

    Google Scholar 

  11. Brandão M, Araújo MG (1992) Cobertura vegetal do município de Belo Horizonte. MG Daphne Rev do Herbário PAMG 2:5–12

    Google Scholar 

  12. Brantz D, Dümpelmann S (2011) Greening the city: urban landscapes in the twentieth century. University of Virginia Press, Charlottesville and London

    Google Scholar 

  13. Brina AE (1992) Aspectos atuais da vegetação da bacia hidrográfica da Pampulha. In: Anais do Seminário da Bacia Hidrográfica da Pampulha. SEGRAC, Belo Horizonte, pp 30–40

  14. Bueno AS, Bruno RS, Pimentel TP et al (2012) The width of riparian habitats for understory birds in an Amazonian forest. Ecol Appl 22:722–734. https://doi.org/10.1890/11-0789.1

    Article  PubMed  Google Scholar 

  15. Chace JF, Walsh JJ (2006) Urban effects on native avifauna: a review. Landsc Urban Plan 74:46–69. https://doi.org/10.1016/j.landurbplan.2004.08.007

    Article  Google Scholar 

  16. Chardon JP, Adriaensen F, Matthysen E (2003) Incorporating landscape elements into a connectivity measure: a case study for the speckled wood butterfly (Pararge aegeria L.). Landsc Ecol 18:561–573

    Article  Google Scholar 

  17. Christiansen MB, Pitter E (1997) Species loss in a forest bird community near Lagoa Santa in southeastern Brazil. Biol Conserv 80:23–32. https://doi.org/10.1016/S0006-3207(96)00073-0

    Article  Google Scholar 

  18. Pereira ACR, Azevedo CCS, Martins WPW (2010) Metodologia do censo com play-back: teste de acuracidade do equipamento nos macacos-prego (Cebus nigritus) do Museu de História Natural e Jardim Botânico (MHNJB) da UFMG. e-Scientia 3:49–56

  19. Dawson R (1997) Landscape ecology and connectivity part 4 of 7. Williams Lake, BC

    Google Scholar 

  20. Dennis AJ, Westcott DA (2006) Reducing complexity when studying seed dispersal at community scales: a functional classification of vertebrate seed dispersers in tropical forests. Oecologia 149:620–634. https://doi.org/10.1007/s00442-006-0475-3

    Article  PubMed  Google Scholar 

  21. Dennis AJ, Lipsett-Moore GJ, Harrington GN et al (2005) Seed predation, seed dispersal and habitat fragmentation: does context make a difference in tropical Australia? In: Forget P-M, Lambert JE, Hulme PE, Vander Wall SB (eds) Seed fate: predation. Dispersal and Seedling Establishment. CAB International, Wallingford, UK, pp 117–135

    Google Scholar 

  22. Duarte TBF (2014) Avifauna de um remanescente florestal de ecótono entre Cerrado e Mata Atlântica na Região Metropolitana de Belo Horizonte. Universidade Federal de Minas Gerais

  23. Duarte TBF, Pena JC de C, Rodrigues M (2014) Novo registro do cuitelão Jacamaralcyon tridactyla (Vieillot, 1817) em fragmento florestal urbano de Belo Horizonte, Minas Gerais Atualidades Ornitológicas 24

  24. Elmqvist T, Fragkias M, Goodness J et al (eds) (2013) Urbanization, biodiversity and ecosystem services: challenges and opportunities. Springer Netherlands, Dordrecht

    Google Scholar 

  25. Faeth SH, Bang C, Saari S (2011) Urban biodiversity: patterns and mechanisms. Ann N Y Acad Sci 1223:69–81

    Article  Google Scholar 

  26. Fahrig L (2013) Rethinking patch size and isolation effects: the habitat amount hypothesis. J Biogeogr 40:1649–1663. https://doi.org/10.1111/jbi.12130

    Article  Google Scholar 

  27. Favre-Bac L, Mony C, Burel F et al (2017) Connectivity drives the functional diversity of plant dispersal traits in agricultural landscapes: the example of ditch metacommunities. Landsc Ecol 32:2029–2040. https://doi.org/10.1007/s10980-017-0564-1

    Article  Google Scholar 

  28. Felix DF (2009) Composição florística do Museu de História Natural e Jardim Botânico da Universidade Federal de Minas Gerais, Belo Horizonte. Universidade Federal de Minas Gerais, Minas Gerais

    Google Scholar 

  29. Fischer J, Lindenmayer DB (2007) Landscape modification and habitat fragmentation: a synthesis. Glob Ecol Biogeogr 12:265–280. https://doi.org/10.1111/j.1466-8238.2006.00287.x

    Article  Google Scholar 

  30. França LF, Ragusa-Netto J, De Paiva LV (2009) Consumo de frutos e abundância de tucano toco (Ramphastos toco) em dois hábitats do Pantanal Sul. Biota Neotrop 9:125–130. https://doi.org/10.1590/S1676-06032009000200012

    Article  Google Scholar 

  31. Galetti M, Laps RR, Pizo MA (2000) Frugivory by toucans (Ramphastidae) at two altitudes in the Atlantic Forest of Brasil. Biotropica 32:842–850. https://doi.org/10.1646/0006-3606(2000)032[0842:FBTRAT]2.0.CO;2

    Article  Google Scholar 

  32. García-Feced C, Saura S, Elena-Rosselló R (2011) Improving landscape connectivity in forest districts: a two-stage process for prioritizing agricultural patches for reforestation. For Ecol Manag 261:154–161

    Article  Google Scholar 

  33. Goddard MA, Dougill AJ, Benton TG (2010) Scaling up from gardens: biodiversity conservation in urban environments. Trends Ecol Evol 25:90–98. https://doi.org/10.1016/j.tree.2009.07.016

    Article  PubMed  Google Scholar 

  34. Goulart FF, Vandermeer J, Perfecto I, da Matta-Machado RP (2011) Frugivory by five bird species in agroforest home gardens of Pontal do Paranapanema, Brazil. Agrofor Syst 82:239–246. https://doi.org/10.1007/s10457-011-9398-z

    Article  Google Scholar 

  35. Graham CH (2001a) Factors influencing movement patterns of keel-billed toucans in a fragmented tropical landscape in southern Mexico. Conserv Biol 15:1789–1798. https://doi.org/10.1046/j.1523-1739.2001.00070.x

    Article  Google Scholar 

  36. Graham CH (2001b) Habitat selection and activity budgets of keel-billed toucans at the landscape level. Condor 103:776–784

    Article  Google Scholar 

  37. Grandi TSM, Carvalho RCF, Del Vigna EAG, et al (1992) Levantamento florístico da margem da Lagoa da Pampulha, Belo Horizonte, Minas Gerais. In: Anais do Seminário da Bacia Hidrográfica da Pampulha. SEGRAC, Belo Horizonte, pp 15–29

  38. Hansbauer MM, Storch I, Leu S et al (2008) Movements of neotropical understory passerines affected by anthropogenic forest edges in the Brazilian Atlantic rainforest. Biol Conserv 141:782–791. https://doi.org/10.1016/j.biocon.2008.01.002

    Article  Google Scholar 

  39. Herrera LP, Sabatino MC, Jaimes FR, Saura S (2017) Landscape connectivity and the role of small habitat patches as stepping stones: an assessment of the grassland biome in South America. Biodivers Conserv 26:3465–3479. https://doi.org/10.1007/s10531-017-1416-7

    Article  Google Scholar 

  40. Herzog CP (2013) Cidades Para Todos - (re)aprendendo a conviver com a Natureza. Mauad, Inverde, Rio de Janeiro

    Google Scholar 

  41. Hoje em Dia (2015a) COMAM adia deliberação sobre licença para obra na Mata do Planalto. In: Horizontes. http://hoje.vc/gkym. Accessed 27 Apr 2016

  42. Hoje em Dia (2015b) PBH descarta compra de área verde no Planalto e garante construção de oito prédios. In: Horizontes. http://hoje.vc/f05r. Accessed 1 Jan 2016

  43. Hoje em Dia (2015c) Área de Proteção Ambiental Fazenda Capitão Eduardo pode ser extinta em BH. In: Horizontes. http://hoje.vc/g6lz. Accessed 1 Jan 2016

  44. Holbrook KM (2011) Home range and movement patterns of toucans: implications for seed dispersal. Biotropica 43:357–364

    Article  Google Scholar 

  45. Holbrook KM, Loiselle BA (2007) Using toucan-generated dispersal models to estimate seed dispersal in Amazonian Ecuador. In: Dennis AJ, Schupp EW, Green RJ, Westcott DA (eds) Seed dispersal: theory and its application in a changing world. CABI International, London, pp 300–321

    Google Scholar 

  46. Hooper DU, Chapin FS, Ewel JJ et al (2005) Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol Monogr 75:3–35. https://doi.org/10.1890/04-0922

    Article  Google Scholar 

  47. Horta MB, Cabral MI, Pires I et al (2018) Assessing urban ecosystem services: different methodological approaches applied in Brazil, Germany, and Portugal. In: Rosa IS, Lopes JC, Ribeiro R, Mendes A (eds). Methods and Tools for Assessing Cultural Landscape Adaptation, Engineering Science Reference, pp 183–220

  48. Howe H (1990) Seed dispersal by birds and mammals: implications for seedling demography. In: Bawa KS, Hadley M (eds) Reproductive ecology of tropical forest plants 7. The Parthenon Publishing Group, Lancaster, pp 191–218

    Google Scholar 

  49. IBGE (2005) Mapas Interativos. Mapa de Biomas. In: Inst Bras Geogr e Estatística http://mapas.ibge.gov.br/biomas2/viewer.htm. Accessed 29 Aug 2016

  50. Janzen DH (1980) Ecologia vegetal nos Trópicos. Editora Pedagógica e Universitária, São Paulo

    Google Scholar 

  51. Karubian J, Browne L, Bosque C et al (2012) Seed dispersal by neotropical birds: emerging patterns and underlying processes. Ornitol Neotrop 23:9–24

    Google Scholar 

  52. Kowarik I (2011) Novel urban ecosystems, biodiversity, and conservation. Environ Pollut 159:1974–1983

    CAS  Article  Google Scholar 

  53. Kupfer JA (2012) Landscape ecology and biogeography: rethinking landscape metrics in a post-FRAGSTATS landscape. Prog Phys Geogr 36:400–420. https://doi.org/10.1177/0309133312439594

    Article  Google Scholar 

  54. Luque S, Saura S, Fortin MJ (2012) Landscape connectivity analysis for conservation: insights from combining new methods with ecological and genetic data. Landsc Ecol 27:153–157. https://doi.org/10.1007/s10980-011-9700-5

    Article  Google Scholar 

  55. Mafia PO, Oliveira EG, Barçante L (2012) Avifauna do Parque Municipal Fazenda Lagoa do Nado, Belo Horizonte. AO On-line 165:33–39

  56. Marini MÂ (2010) Bird movement in a fragmented Atlantic Forest landscape. Stud Neotropical Fauna Environ 45:1–10. https://doi.org/10.1080/01650521003656606

    Article  Google Scholar 

  57. Metzger JP, Martensen AC, Dixo M et al (2009) Time-lag in biological responses to landscape changes in a highly dynamic Atlantic forest region. Biol Conserv 142:1166–1177. https://doi.org/10.1016/j.biocon.2009.01.033

    Article  Google Scholar 

  58. Mouillot D, Villéger S, Scherer-Lorenzen M, Mason NWH (2011) Functional structure of biological communities predicts ecosystem multifunctionality. PLoS One 6:e17476. https://doi.org/10.1371/journal.pone.0017476

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  59. Mühlner S, Kormann U, Schmidt-Entling M et al (2010) Structural versus functional habitat connectivity measures to explain bird diversity in fragmented orchards. J Landsc Ecol 3:52–63. https://doi.org/10.2478/v10285-012-0023-2

    Article  Google Scholar 

  60. Niemelä J (1999) Ecology and urban planning. Biodivers Conserv 8:119–131. https://doi.org/10.1023/A:1008817325994

    Article  Google Scholar 

  61. Noss RF (1991) Landscape connectivity: different functions at different scales. In: Hudson WE (ed) Landscape linkages and biodiversity. Island Press, Washington, D.C., p 194

  62. Oliveira AR, Teixeira MLF, Reis R (2009) As palmeiras-imperiais do Jardim Botânico. Dantes Editora, Rio de Janeiro

    Google Scholar 

  63. Pascual-Hortal L, Saura S (2006) Comparison and development of new graph-based landscape connectivity indices: towards the priorization of habitat patches and corridors for conservation. Landsc Ecol 21:959–967. https://doi.org/10.1007/s10980-006-0013-z

    Article  Google Scholar 

  64. Pasternak S, Bogus LMM (2004) The city of extremes: socio-spatial inequalities in in São Paulo. In: Adequate & Affordable Housing for all. Research, policy, practice. Toronto, June 24-27, pp 1–28

  65. Pauchard A, Aguayo M, Peña E, Urrutia R (2006) Multiple effects of urbanization on the biodiversity of developing countries: the case of a fast-growing metropolitan area (Concepción, Chile). Biol Conserv 127:272–281. https://doi.org/10.1016/j.biocon.2005.05.015

    Article  Google Scholar 

  66. PBH (2015) Parque Municipal Ursulina de Andrade Mello. In: Fundação Parques e Jard. Prefeitura Munic. Belo Horiz. http://portalpbh.pbh.gov.br/pbh/ecp/comunidade.do?evento=portlet&pidplc=ecptaxonomiamenuportal&app=fundacaoparque&lang=pt_br&pg=5521&tax=21839. Accessed 1 Jan 2016

  67. PDDI (2011) Plano Diretor de Desenvolvimento Integrado da Região Metropolitana de Belo Horizonte. Propostas de políticas setoriais, projetos e investimentos prioritários

  68. Pena JCC, Magalhães DM, Moura ACM et al (2016) The green infrastructure of a highly-urbanized Neotropical city: the role of the urban vegetation in preserving native biodiversity. REVSBAU 11:66–78

  69. Pena JCC, Martello F, Ribeiro MC et al (2017) Street trees reduce the negative effects of urbanization on birds. PLoS One 12:1–19. https://doi.org/10.1371/journal.pone.0174484

    Article  Google Scholar 

  70. Perera AH, Drew CA, Johnson CJ (eds) (2012) Expert knowledge and its application in landscape ecology. Springer, New York

    Google Scholar 

  71. Purschke O, Sykes MT, Poschlod P et al (2014) Interactive effects of landscape history and current management on dispersal trait diversity in grassland plant communities. J Ecol 102:437–446. https://doi.org/10.1111/1365-2745.12199

    Article  PubMed  Google Scholar 

  72. Ragusa-Netto J (2006) Abundance and frugivory of the Toco Toucan (Ramphastos toco) in a gallery forest in Brazil’s southern Pantanal. Braz J Biol 66:133–142. https://doi.org/10.1590/S1519-69842006000100017

    CAS  Article  PubMed  Google Scholar 

  73. Rayfield B, Fortin M-J, Fall A (2011) Connectivity for conservation: a framework to classify network measures. Ecology 92:847–858

    Article  Google Scholar 

  74. Rodrigues M, Goulart FF (2005) Aves regionais: de Burton aos dias de hoje. In: Goulart EMA (ed) Navegando o Rio das Velhas das Minas aos Gerais. Volume 2: Estudos sobre a bacia hidrográfica do Rio das Velhas. Projeto Manuelzão/UFMG, Belo Horizonte, pp 590–602

  75. Santos AA, Ragusa-Netto J (2013) Toco-Toucan (Ramphastos toco) feeding habits at an urban area in Central Brazil. Ornitol Neotrop 24:1–13

  76. Saura S, Pascual-Hortal L (2007) A new habitat availability index to integrate connectivity in landscape conservation planning: comparison with existing indices and application to a case study. Landsc Urban Plan 83:91–103. https://doi.org/10.1016/j.landurbplan.2007.03.005

    Article  Google Scholar 

  77. Saura S, Torné J (2012) Conefor user manual v. 2.6. 19

  78. Saura S, Bodin Ö, Fortin M-J (2014) Stepping stones are crucial for species’ long-distance dispersal and range expansion through habitat networks. J Appl Ecol 51:171–182. https://doi.org/10.1111/1365-2664.12179

    Article  Google Scholar 

  79. Şekercioğlu CH, Daily GC, Ehrlich PR (2004) Ecosystem consequences of bird declines. Proc Natl Acad Sci 101:18042–18047. https://doi.org/10.1073/pnas.0408049101

    CAS  Article  PubMed  Google Scholar 

  80. Shen LY, Jorge Ochoa J, Shah MN, Zhang X (2011) The application of urban sustainability indicators - a comparison between various practices. Habitat Int 35:17–29. https://doi.org/10.1016/j.habitatint.2010.03.006

    Article  Google Scholar 

  81. Short LL, Horne JFM (2001) Toucans, barbets, and honeyguides: Ramphastidae, Capitonidae, and Indicatoridae. Oxford University Press

  82. Sick H (1997) Ornitologia Brasileira. Nova Fronteira, Rio de Janeiro

    Google Scholar 

  83. Sperandelli DI, Dupas FA, Dias Pons NA (2013) Dynamics of urban sprawl, vacant land, and green spaces on the metropolitan fringe of São Paulo, Brazil. J Urban Plan Dev 139:274–279

    Article  Google Scholar 

  84. Stratford JA, Stouffer PC (1999) Local extinctions of terrestrial insectivorous birds in a fragmented landscape near Manaus, Brazil. Conserv Biol 13:1416–1423. https://doi.org/10.1046/j.1523-1739.1999.98494.x

    Article  Google Scholar 

  85. Taylor PD, Fahrig L, With KA (2006) Landscape connectivity: a return to the basics. In: Crooks KR, Sanjayan M (eds) Connectivity conservation. The Nature Conservancy Cambridge University Press, Cambridge, pp 29–43

    Google Scholar 

  86. Teng M, Wu C, Zhou Z et al (2011) Multipurpose greenway planning for changing cities: a framework integrating priorities and a least-cost path model. Landsc Urban Plan 103:1–14. https://doi.org/10.1016/j.landurbplan.2011.05.007

    Article  Google Scholar 

  87. Tischendorf L, Fahrig L (2000) On the usage and measurement of landscape connectivity. Oikos 90:7–19

    Article  Google Scholar 

  88. Tryjanowski P, Skórka P, Sparks TH et al (2015) Urban and rural habitats differ in number and type of bird feeders and in bird species consuming supplementary food. Environ Sci Pollut Res 22:15097–15103. https://doi.org/10.1007/s11356-015-4723-0

    Article  Google Scholar 

  89. Urban DL, Minor ES, Treml EA, Schick RS (2009) Graph models of habitat mosaics. Ecol Lett 12:260–273. https://doi.org/10.1111/j.1461-0248.2008.01271.x

    Article  PubMed  Google Scholar 

  90. Vilà M, Espinar JL, Hejda M et al (2011) Ecological impacts of invasive alien plants: a meta-analysis of their effects on species, communities and ecosystems. Ecol Lett 14:702–708. https://doi.org/10.1111/j.1461-0248.2011.01628.x

    Article  Google Scholar 

  91. Watts K, Eycott AE, Handley P et al (2010) Targeting and evaluating biodiversity conservation action within fragmented landscapes: an approach based on generic focal species and least-cost networks. Landsc Ecol 25:1305–1318. https://doi.org/10.1007/s10980-010-9507-9

    Article  Google Scholar 

  92. Woolley H (2005) Urban open spaces. Spon Press, London and New York

    Google Scholar 

  93. Wright SJ (2007) Seed dispersal in anthropogenic landscape. In: Dennis AJ, Schupp EW, Green RJ, Westcott DA (eds) . Seed dispersal: theory and its application in a changing world, CAB International, pp 599–614

    Google Scholar 

  94. Zipperer WC (2002) Exotic species patterns and functions in urban landscapes. Proceedings: 2002 U.S. Department of Agriculture Interagency Research Forum. GTR-NE-300, pp 108-109

  95. Zipperer WC, Pickett ST (2012) Urban ecology: patterns of population growth and ecological effects. In: eLS. John Wiley & Sons, Ltd, Chichester, UK, pp 1–8

Download references

Acknowledgements

We thank two anonymous reviewers for their criticisms of an earlier version of this work. We also thank PBH (Belo Horizonte Municipal Administration), PRODABEL (Belo Horizonte Informatics and Information Municipal Company) and Felipe Antônio Carneiro Rodrigues for providing the Belo Horizonte municipal spatial dataset. Marise Barreiros Horta and Tulaci Bhakti received scholarships from CAPES (Brazilian Federal Agency for Support and Evaluation of Graduate Education). Sónia Maria Carvalho-Ribeiro and Geraldo Wilson Fernandes received support from CNPq (National Council for Scientific and Technological Development). Fernando Figueiredo Goulart received financial support from PNPD-CAPES.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Marise Barreiros Horta.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Horta, M.B., Bhakti, T., Cordeiro, P.F. et al. Functional connectivity in urban landscapes promoted by Ramphastos toco (Toco Toucan) and its implications for policy making. Urban Ecosyst 21, 1097–1111 (2018). https://doi.org/10.1007/s11252-018-0789-z

Download citation

Keywords

  • Environmental planning
  • Least cost routes
  • Seed dispersal
  • Urban ecology