Skip to main content

Advertisement

Log in

Energy crop production in an urban area: a comparison of habitat types and land use forms targeting economic benefits and impact on species diversity

  • Published:
Urban Ecosystems Aims and scope Submit manuscript

Abstract

In urban areas, the potential of biomass production is rarely utilized, although many biomass sources are located in cities, ranging from road margins to public parks. There is, however, increasing interest in these potential biomass sources, as they are close to consumers and provide options to reduce maintenance costs of urban green areas. We analyzed the costs and benefits of utilizing biomass, and compared it to the biodiversity maintained on 17 urban land use forms the Ruhr Metropolitan Area (Germany). Economic costs and benefits were reflected by contribution margins, while biodiversity was measured by species numbers of plants, birds and butterflies. For the 17 land use types, there is a weak overall correlation between contribution margins and species numbers. However, this is mainly due to the two land use forms with the highest contribution margins (cultivation of energy maize and fertilized grassland), which are characterized by the lowest species numbers. For the remaining cases, there is no relationship between contribution margins and species numbers. Comparatively high contribution margins and high mean species numbers were observed for road margins, industrial fallows with wood cutting for biogas production and water-influenced grassland mown traditionally. We conclude that biomass production and the maintenance of urban biodiversity is not necessarily a contradiction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • BMVBS (Bundesministerium für Verkehr, Bau und Stadtentwicklung), 2010. Potenzialanalyse und Handlungsoptionen zur Nutzung von Biomasse auf Recyclingflächen. BMVBS-Online-Publikation, Nr. 28/2010, Berlin

  • Brandt K, Glemnitz M (2014) Assessing the regional impacts of increased energy maize cultivation on farmland birds. Environ Monit Assess 186:679–697

    Article  PubMed  Google Scholar 

  • Brunzel S, Fischer SF, Schneider J, Jetzkowitz J, Brandl R (2009) Neo- and archaeophytes respond more strongly than natives to socio-economic mobility- and disturbance patterns along an urban-rural gradient. J Biogeogr 36:835–844

    Article  Google Scholar 

  • Callesen I, Grohnheit PE, Ostergard H (2010) Optimization of bioenergy yield from cultivated land in Denmark. Biomass Bioenergy 34:1348–1362

    Article  Google Scholar 

  • Catford JA, Naiman RJ, Chambers LE, Roberts J, Douglas M, Davies P (2013) Predicting novel riparian ecosystems in a changing climate. Ecosystems 16:382–400

    Article  Google Scholar 

  • Fargione J, Hill J, Tilman D, Polasky S, Hawthorne P (2008) Land clearing and the biofuel carbon debt. Science 319:1235–1238

    Article  PubMed  CAS  Google Scholar 

  • Fischer LK, von der Lippe M, Rillig MC, Kowarik I (2013) Creating novel urban grasslands by reintroducing native species in wasteland vegetation. Biol Conserv 159:119–126

    Article  Google Scholar 

  • FNR (Fachagentur Nachwachsende Rohstoffe e.V.) 2014. Biobrennstoffe – Preise. http://www.fnr.de/service/kosten-preise/preise-bioenergie. Accessed at 20.5.2016

  • Gevers J, Hoye TT, Topping CJ, Glemnitz M, Schröder B (2011) Biodiversity and the mitigation of climate change through bioenergy: impacts of increased maize cultivation on farmland wildlife. GBC Bioenergy 3:472–482

    Google Scholar 

  • Goldemberg J (2007) Ethanol for a sustainable energy future. Science 315:808–810

    Article  PubMed  CAS  Google Scholar 

  • Haberl H, Erb KH, Krausmann F, Gaube V, Bondeau A, Plutzar C, Gingrich S, Lucht W, Fischer-Kowalski M (2007) Quantifying and mapping the human appropriation of net primary production in earth's terrestrial ecosystems. Proc Natl Acad Sci U S A 104:12942–12945

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kellermann J, 2012. Nachhaltigkeitsorientierte Diskontierung in wirtschaftlichen Ex-ante-Analysen zur Fundierung umweltrelevanter Entscheidungen. Verlag Dr. Kovac, Hamburg

  • LANUV (Landesamt für Natur, Umwelt- und Verbraucherschutz Nordrhein-Westfalen), 2011. Rote Liste und Artenverzeichnis der Farn- und Blütenpflanzen – Pteridophyta et Spermatophyta – in Nordrhein-Westfalen. LANUV (Ed.), 4. edition, Theatr Rec

  • LWK NRW (Landwirtschaftskammer Nordrhein-Westfalen) 2012 Steckbriefe Energiepflanzen. http://www.landwirtschaftskammer.de/landwirtschaft/ackerbau.../pdf/steckbriefe-energiepflanzen.pdf, accessed at 20.4.2016

  • Mao Y, Yannarell AC, Davis SC, Mackie RI (2013) Impact of different bioenergy crops on N-cycling bacterial and archaeal communities in soil. Environ Microbiol 15:928–942

    Article  PubMed  CAS  Google Scholar 

  • Meffert PJ, Dziock F (2012) What determines occurrence of threatened bird species on urban wastelands? Biol Conserv 153:87–96

    Article  Google Scholar 

  • Nielsen AB, van den Bosch M, Maruthaveeran S, van den Bosch CK (2014) Species richness in urban parks and its drivers: a review of empirical evidence. Urban Ecosystems 17:305–327

    Article  Google Scholar 

  • Niemela J (1999) Ecology and urban planning. Biodivers Conserv 1:119–131

    Article  Google Scholar 

  • Paker Y, Yom-Tov Y, Alon-Mozes T, Barnea A (2014) The effect of plant richness and urban garden structure on bird species richness, diversity and community structure. Landsc Urban Plan 122:186–195

    Article  Google Scholar 

  • Prognos (2016) http://www.prognos.com/publikationen/alle-publikationen/595/show/ff1b2fc25cce268f9adbf1657cb93739/; accessed at 20.04.2016

  • Sattler T, Duelli P, Obrist MK, Arlettaz R, Moretti M (2010) Response of arthropod species richness and functional groups to urban habitat structure and management. Landsc Ecol 25:941–954

    Article  Google Scholar 

  • Sauerbrei R, Ekschmitt K, Wolters V, Gottschalk TK (2014) Increased energy maize production reduces farmland bird diversity. GBC Bioenergy 6:265–274

    Google Scholar 

  • Savard JPL, Clergeau P, Mennechez G (2000) Biodiversity concepts and urban ecosystems. Landsc Urban Plan 48:131–142

    Article  Google Scholar 

  • Schneider U, Stilling G, Woltering C (2012) Positive Trends gestoppt, negative Trends beschleunigt. Bericht zur regionalen Armutsentwicklung in Deutschland 2012. Der Paritätische Gesamtverband, Berlin 25 pp

    Google Scholar 

  • Seifert C, Leuschner C, Meyer S, Culmsee H (2014) Inter-relationships between crop type, management intensity and light transmissivity in annual crop systems and their effect on farmland plant diversity. Agric Ecosyst Environ 195:173–182

    Article  Google Scholar 

  • Seto KC, Gueneralp B, Hutyra LR (2012) Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc Natl Acad Sci U S A 109:16083–16088

    Article  PubMed  PubMed Central  Google Scholar 

  • Smeets EMW, Faaij APC, Lewandowski IM, Turkenburg WC (2007) A bottom-up assessment and review of global bio-energy potentials to 2050. Prog Energy Combust Sci 33:56–106

    Article  CAS  Google Scholar 

  • Sudfeldt C, Bairlein F, Dröschmeister R, König C, Langgemach T & Wahl J 2012. Vögel in Deutschland 2012. Dachverband Deutscher Avifaunisten, Münster, 55 pp.

  • Sures B, Dangel DR, Eisinger M, D, Dettmar J 2015. Natur und Lebensqualität: Nachhaltige Urbane Kulturlandschaft Metropole Ruhr (KuLaRuhr). Natur und Landschaft, 90, 354–359

  • Werling BP, Dickson TL, Isaacs R, Gaines H, Gratton C, Gross KL, Liere H, Malmstrom CM, Meehan TD, Ruan L, Robertson BA, Robertson GP, Schmidt TM, Schrotenboer AC, Teal TK, Wilson JK, Landis DA (2014) Perennial grasslands enhance biodiversity and multiple ecosystem services in bioenergy landscapes. Proc Natl Acad Sci U S A 111:1652–1657

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wittig R, Diesing G, Gödde M (1985) Urbanophob–Urbanoneutral–Urbanophil. Das Verhalten der Arten gegenüber dem Lebensraum Stadt. Flora 177:265–282

    Article  Google Scholar 

Download references

Acknowledgements

This study was financed by the project KuLaRuhr as part of the German Federal Ministry of Education and Research programme ‘Sustainable land use’ (BMBF, project number: 033L020A, www.kularuhr.de).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Hering.

Additional information

Highlights

- Urban land use forms producing biomass most effectively are characterized by a low biodiversity.

- Urban land use forms producing biomass least effectively are not characterized by a high biodiversity.

- Urban land use forms with the best trade-off between efficient biomass production and urban biodiversity are road margins, old and young industrial fallows with wood cutting for biogas production and traditionally mown water-influenced grassland.

Electronic supplementary material

ESM 1

(DOC 21 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brunzel, S., Kellermann, J., Nachev, M. et al. Energy crop production in an urban area: a comparison of habitat types and land use forms targeting economic benefits and impact on species diversity. Urban Ecosyst 21, 615–623 (2018). https://doi.org/10.1007/s11252-018-0754-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11252-018-0754-x

Keywords

Navigation