Urban park area and age determine the richness of native and exotic plants in parks of a Latin American city: Santiago as a case study

Abstract

Plant diversity and composition in urban parks is determined by socio-economics, environmental, and ecological drivers. These drivers give rise to urban spaces with unique compositions of flora, consisting of planted and spontaneous species. The present study aimed to determine the contribution of native and exotic species in urban parks of a Latin American city, and to assess the related role of park area, age and socio-economic status. We also evaluated administration type (public or private) and the effect of environmental factors on plant richness. We hypothesized that the composition of park vegetation differs according to urban-rural gradient. To determine flora composition, two transects (100 m long by 1–3 m wide) per park were selected in 49 parks. In each of these, we identified all the vascular plants found (woody and herbs, planted and spontaneous), which were then classified as native or exotic. We conducted ANCOVAs in order to determine the effect of five independent variables and one factor, on native and exotic plant richness. Of 550 recorded species, 16.2% were native and 83.8% exotic. Number of plant species per park varied between 42 and 146. The parks are known urban habitats containing the highest planted and spontaneously occurring exotic diversity in the city of Santiago, contrasting with other types of habitats. Likewise, parks in Santiago are habitats with low levels of planted and spontaneously occurring native diversity, compared to the parks of Europe, America North and Asia. Ours results show that park area and age affected native plant richness, while exotic plant richness was determined only by park age. We rejected all other possible drivers. Finally, according to the low frequency of native species, we propose that Santiago’s parks could be gradually reoriented towards ex-situ conservation of native plants.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

  1. Abendroth S, Kowarik I, Muller N, von der Lippe M (2012) The green colonial heritage: Woody plants in park of Bandung, Indonesia. Landsc Urban Plan 106:12–22

    Article  Google Scholar 

  2. Alvarado A, Bandini A, Guajardo F (2013) Árboles urbanos de Chile. Guía de reconocimiento. 2d. edn. Corporación Nacional Forestal. Santiago de Chile

  3. Ames S, Pischke K, Schoenfuss N, Snobl Z, Weiher E, Wellnitz T (2012) Biogeography patterns of lichens and tree on island of Boundary Waters Canoe Area Wilderness. Bios 83:145–154

    Article  Google Scholar 

  4. Bae J, Ryu Y (2015) Land use and land cover changes explain spatial and temporal variations of the soil organic carbon stocks in a constructed urban park. Landsc Urban Plan 136:57–67

    Article  Google Scholar 

  5. Bedimo-Rung AL, Mowen AJ, Cohen DA (2005) The significance of parks to physical activity and public health: A conceptual model. Am J Prev Med 28:159–168

    Article  PubMed  Google Scholar 

  6. Bonthoux S, Brun M, di Pietro F, Greulich S, Bouché-Pillon S (2014) How can wastelands promote biodiversity in cities? A review. Landsc Urban Plan 132:79–88

    Article  Google Scholar 

  7. Bowler DE, Buyung-Ali L, Knight TM, Pullin AS (2010) Urban greening to cool towns and cities: A systematic review of the empirical evidence. Landsc Urban Plan 97:147–155

    Article  Google Scholar 

  8. Bryant MM (2006) Urban landscape conservation and the role of ecological greenways at local and metropolitan scales. Landsc Urban Plan 76:23–44

    Article  Google Scholar 

  9. Castro SA, Figueroa JA, Muñoz-Schick M, Jaksic FM (2005) Minimum residence time, biogeographical origin, and life cycle as determinants of the geographical extent of naturalized plants in continental Chile. Divers Distrib 11:183–191

    Article  Google Scholar 

  10. Ceballos W (1997) Enverdecimiento urbano en Chile. In: Krishnamurthy L, Rente Nascimento J (eds) Área verdes urbanas en Latinoamérica y el Caribe. Banco Interamericano de Desarrollo, Ciudad de México, pp 231–251

    Google Scholar 

  11. Collins CC (1997) Oscar Prager, jardines en el paisaje. ARQ 37:62–68

    Google Scholar 

  12. Cornelis J, Hermy M (2004) Biodiversity relationship in urban and suburban parks in Flanders. Landsc Urban Plan 69:385–401

    Article  Google Scholar 

  13. de Mattos C (2003) Globalización y transformación metropolitana en el caso de Santiago. In: Hidalgo R, Arenas F, Coll JL (eds) Los nuevos modos de gestión de la metropolización. Serie Geolibros. Instituto de Geografía. P. Universidad Católica de Chile, Santiago de Chile, pp 27–55

    Google Scholar 

  14. Figueroa JA, Teillier S, Castro SA (2011) Diversity patterns and composition of native and exotic floras in central Chile. Acta Oecol 37:103–109

    Article  Google Scholar 

  15. Figueroa JA, Teillier S, Carvallo G, Castro SA (2013) Especies de plantas exóticas en los campos agrícolas y en los sitios perturbados en Chile Central. In: Reveco O (ed) Más allá de lo dicho: hallazgos desde la investigación. RIL Editores, Santiago de Chile, pp 369–384

    Google Scholar 

  16. Figueroa JA, Teillier S, Guerrero N, Ray C, Rivano S, Saavedra D, Castro SA (2016) Vascular flora in public space of Santiago, Chile. Gayana Bot 73:85–103

    Article  Google Scholar 

  17. Fischer LK, Rodorff V, von der Lippe M, Kowarik I (2016) Drivers of biodiversity patterns in parks of a growing South American megacity. Urban Ecosyst 19:1231–1249

    Article  Google Scholar 

  18. Friedley JD, Brown RL, Bruno JE (2004) Null models of exotic invasion and scale-dependent patterns of native and exotic species richness. Ecology 86:1848–1855

    Google Scholar 

  19. Gaertner M, Breeyen AD, Hui C, Richardson M (2009) Impacts of alien plants invasions on species richness in Mediterranean-type ecosystems: a meta-analysis. Prog Phys Geogr 33:319–338

    Article  Google Scholar 

  20. García A (1989) El parquet urbano como espacio multifunctional: origen, evolución y principales funciones. Paralelo 37:105–111

    Google Scholar 

  21. Garcia E (1997) Composicion floristica y ecologica de las comunidades ruderales de las calles de la ciudad de La Paz. Ecología en Bolivia 29:1–75

    Google Scholar 

  22. Gärtner E, Rojas G, Castro SA (2015) Compositional patterns of ruderal herbs in Santiago, Chile. Gayana Bot 72:192–202

    Article  Google Scholar 

  23. Goddard MA, Dougill AJ, Benton TG (2010) Scaling up from gardens: biodiversity conservation in urban environments. Trends Ecol Evol 25:90–98

    Article  PubMed  Google Scholar 

  24. GOOGLE EARTH PRO (Version 2016) (2016) Copyright Google. https://support.google.com/earth/. Accessed 1 Dec 2016

  25. Guerrero-Leiva N, Castro SA, Rubio MA, Ortiz-Calderón C (2016) Retention of atmospheric particulates by three woody ornamental species in Santiago, Chile. Air Soil Poll 227:435

    Article  CAS  Google Scholar 

  26. Gustafson EJ, Gardner RH (1996) The effect of landscape heterogeneity on the probability of patch colonization. Ecology 77:94–107

    Article  Google Scholar 

  27. Hoffmann A (1998) El árbol urbano en Chile, 3rd edn. Fundación Claudio Gay, Santiago de Chile

    Google Scholar 

  28. Ignatieva ME (2011) Plant material for urban landscapes in the era of globalization: roots, challenges and innovative solutions. In: Richte M, Weiland U (eds) Applied urban ecology: a global framework. John Wiley & Sons, Chichester, pp 139–151

    Google Scholar 

  29. INE (2005) Chile: ciudades, pueblos, aldeas y caseríos. Instituto Nacional de Estadística. Dirección Nacional, Santiago de Chile

    Google Scholar 

  30. Kotzen B (2003) An investigation of shade under six different tree species of the Negev desert towards theirs potential use for enhancing micro-climatic condition in landscape architectural development. J Arid Environ 2:231–274

    Article  Google Scholar 

  31. Li W, Ouyang Z, Meng X, Wang X (2006) Plant species composition in relation to green cover configuration and function of urban parks in Beijing, China. Ecol Res 21:221–237

    Article  Google Scholar 

  32. Lososová Z, Horsák M, Chytrý M, Čejka T, Danihelka J, Fajmon K, Hájek O, Juřičková L, Kintrová K, Lániková D, Otýková Z, Řehořek V, Tichý L (2011a) Diversity of Central European urban biota: effect of human-made habitat types on plants and snails. J Biogeogr 38:1152–1163

    Article  Google Scholar 

  33. Lososová Z, Chytrý M, Tichý L, Danihelka J, Fajmon K, Hájek O, Kintrová K, Kühn I, Láníková D, Otýpková Z, Řehořek V (2011b) Native and alien floras in urban habitats: a comparison across 32 cities of central Europe. Glob Ecol Biogeogr 21:545–555

    Article  Google Scholar 

  34. Luck GW, Smallbone LT, O’Brien R (2009) Socio-economics and vegetation change in urban ecosystems: patterns in space and time. Ecosystems 12:604–620

    Article  Google Scholar 

  35. Magura T, Lövei GL, Tóthmérész B (2010) Does urbanization decrease diversity in ground beetle (Caarabidae) assemblages? Glob Ecol Biogeogr 19:16–26

    Article  Google Scholar 

  36. Marticorena C, Quezada M (1985) Catálogo de la flora vascular de Chile. Gayana Botánica 42:1–157

    Google Scholar 

  37. Martín-Forés I, Castro I, Acosta-Gallo B, del Pozo A, Sanchez-Jardon L, de Miguel JM, Ovalle C, Casado MA (2016) Alien plant species coexist over time with native ones in Chilean Mediterranean grasslands. J Plant Ecol. https://doi.org/10.1093/jpe/rtw043

  38. Mason CF (2000) Thruhes now largely restricted to the built environment in Eastern England. Diver Distrib 6:189–194

    Article  Google Scholar 

  39. Matthei O (1995) Manual de malezas que crecen en Chile. Alfabeta Impresores, Santiago de Chile

    Google Scholar 

  40. McKinney M (2008) Effects of urbanization on species richness: A review of plants and animals. Urban Ecosyst 11:161–176

    Article  Google Scholar 

  41. McPhee J, Cortés G, Rojas M, García L, Descalzi A, Vargas L (2014) Downscaling Climate Changes for Santiago: What Effects can be Expected? In: Krellenberg K, Hansjürgens B (eds) Climate Adaptation Santiago. Springer-Verlag, Berlin Heidelberg, pp 19–41

    Google Scholar 

  42. Méndez E (2005) Flora y vegetación del centro urbano de Luján de Cuyo. Mendoza (Argentina). Revista de la Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo 37:67–74

    Google Scholar 

  43. Moro MF, Farias-Castro AS (2015) A check list of plant species in the urban forestry of Fortaleza, Brazil: where are the native species in the country of megadiversity? Urban Ecosyst 18:47–71

    Article  Google Scholar 

  44. Mouillot D, Graham NAJ, Villéger S, Mason NWH, Bellwood DR (2013) A functional approach reveals community responses to disturbances. Trends Ecol Evol 28:167–177

    Article  PubMed  Google Scholar 

  45. Muratet A, Pellegrini P, Dufour AB, Arrif T (2015) Perception and knowledge of plant diversity among urban park users. Landsc. Urban Plan 137:95–106

    Article  Google Scholar 

  46. Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858

    Article  PubMed  CAS  Google Scholar 

  47. Nielsen AB, van den Bosch M, Maruthaveeran S, van den Bosch CK (2014) Species richness in urban parks and its drivers: a review of empirical evidence. Urban Ecosyst 17:305–327

    Article  Google Scholar 

  48. Nowak DJ, Hirabayashi S, Bodine A, Greenfield E (2014) Tree and forest effects on air quality and human health in the United States. Environ Pollut 193:119–129

    Article  PubMed  CAS  Google Scholar 

  49. Oliveira S, Andrade H, Vaz T (2011) The cooling effect of green space as a contribution to the mitigation of urban heat: A case study in Lisbon. Build Environ 46:2186–2194

    Article  Google Scholar 

  50. Philippi RA (1882) Catálogo de las plantas cultivadas para el Jardín Botánico de Santiago hasta el 1 de mayo de 1881. Anales de la Universidad de Chile 59:519–581

    Google Scholar 

  51. PNUD (2003) Las trayectorias del desarrollo humano en las comunas de Chile (1994–2003). Temas de Desarrollo Humano Sustentable N° 11. PNUD Chile

  52. Pyšek P, Jarošík V, Pergl J, Randall R, Chytrý M, Kühn I, Tichý L, Danihelka J, Chrtek J, Sádlo J (2009) The global invasion success of Central European plants is related to distribution characteristics in their native range and species traits. Diver Distrib 15:891–903

    Article  Google Scholar 

  53. Ramalho CE, Hobbs RJ (2012) Time for a change: dynamic urban ecology. Trends Ecol Evol 27:179–188

    Article  PubMed  Google Scholar 

  54. Rapoport EH, López-Moreno I (1987) Aportes a la Ecología Urbana de la Ciudad de México. Limusa, Ciudad de México

    Google Scholar 

  55. Romero H, Vásquez A (2005) Evaluación ambiental del proceso de urbanización de las cuencas del piedemonte andino de Santiago de Chile. Eur Secur 94:97–118

    Google Scholar 

  56. Romero H, Molina M, Moscoso C, Sarricolea P, Smith P, Vásquez A (2007) Caracterización de los cambios de usos y coberturas de suelo causados por la expansión urbana de Santiago, análisis de sus factores explicativos e inferencias ambientales. In: de Mattos C, Hidalgo R (eds) Santiago de Chile: Movilidad espacial y Reconfiguración Metropolitana. Ediciones Pontificia Universidad Católica de Chile, Santiago de Chile, pp 251–270

    Google Scholar 

  57. Rosenzweig R, Blackmar E (1992) The park and the people. A history of Central Park. Cornell University Press, Ithaca

    Google Scholar 

  58. Rossetti F (2009) Arquitectura del paisaje en Chile. Ocho Libros Editores, Santiago de Chile

    Google Scholar 

  59. Sarah P, Zhevelev HM, Oz A (2015) Urban park soil and vegetation. Effects of natural and anthropogenic factors Pedosphere 25:392–404

    Google Scholar 

  60. Säumel I, Kowarik I, Butenschön S (2010) Green traces from past to future: the interplay of culture and ecological process in European historical parks. Acta Hortic 881:933–938

    Article  Google Scholar 

  61. Schmitt JL, Goetz MNB (2010) Species richness of fern and lycophyte in an urban park in the Rio dos Sinos basin, Southern Brazil. Braz J Biol 70:1161–1167

    Article  PubMed  CAS  Google Scholar 

  62. Schwarz K, Fragkias M, Boone CG, Zhou W, McHale M, Morgan J, O’Neil-Dunne J, JP MF, Buckley GL, Childers D, Ogden L, Pincetl S, Pataki D, Whitmer A, Cadenasso ML (2015) Tree grow on money: urban tree canopy cover and environmental justice. PLoS One. https://doi.org/10.1371/journal.pone.0122051

  63. Serra MT, Torres J, Grez I (2002) Breve historia de la introducción en Chile del álamo (Populus nigra L. var. italica (Moench.) Koehne) y el desarrollo de ejemplares siempreverdes. Chloris Chilensis 5 (2) http://www.chlorischile.cl. Accessed 1 Dec 2016

  64. Simmons BL, Hallett RA, Falxa N, Auyeung DSN, Lu JWT (2016) Long-term outcomes of forest restoration in an urban park. Restor Ecol 24:109–118

    Article  Google Scholar 

  65. Smith RM, Thompson K, Hodgson JG, Warren PH, Gaston KJ (2006) Urban domestic gardens (IX): Composition and richness of the vascular plan flora, and implications for native biodiversity. Biol Conserv 129:312–322

    Article  Google Scholar 

  66. Tam KC, Bonebrake TC (2016) Butterfly diversity, habitat and vegetation usage in Hong Kong urban parks. Urban Ecosyst 19:721–733

    Article  Google Scholar 

  67. Teillier S, Figueroa JA, Castro SA (2010) Especies exóticas de la vertiente occidental de la cordillera de la Costa, Provincia de Valparaíso, Chile central. Gayana Bot 67:27–43

    Google Scholar 

  68. Turner K, Lefler L, Freedman B (2005) Plant communities of selected urbanized areas of Halifax, Nova Scotia, Canada. Landsc Urban Plan 71:191–206

    Article  Google Scholar 

  69. Vallet J, Daniel H, Beaujouan V, Rozé F, Pavoine S (2010) Using biological traits to assess how urbanization filters plant species of small woodlands. Appl Veg Sci 13:42–424

    Article  Google Scholar 

  70. Walker JS, Grimm NB, Briggs JM, Gries C, Dugan L (2009) Effects of urbanization on plant species diversity in central Arizona. Front Ecol Environ 7:465–470

    Article  Google Scholar 

  71. XLSTAT Pro (Version 2015) (2015) Copyright Addinsoft. http://www.xlstat.com. Accessed 1 Dec 2016

  72. Zerbe S, Maurer U, Schmitz S, Sukopp H (2003) Biodiversity in Berlin and its potential for nature conservation. Landsc Urban Plan 62:139–148

    Article  Google Scholar 

  73. Zuloaga F, Morrone O, Belgrano M (2009) Catálogo de las Plantas Vasculares del Cono Sur. Versión online. http://www.darwin.edu.ar/Proyectos/FloraArgentina/FA.asp. Accessed 1 Dec 2016

Download references

Acknowledgements

This study was funded by an intern project of the Universidad Central de Chile. We thank park managers who facilitated us to collect plants. SA Castro gratefully acknowledges the support of the Center for the Development of Nanoscience and Nanotechnology, CEDENNA FB0807 – Line 6, DICYT 021543CM, and USA 1498.04. In addition, we thank JF Hernández who revised the manuscript translation and J Macaya for help with species determination.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Javier A. Figueroa or Sergio A. Castro.

Appendix

Appendix

Table 3 List of the 49 parks selected in the study in Santiago of Chile

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Figueroa, J.A., Castro, S.A., Reyes, M. et al. Urban park area and age determine the richness of native and exotic plants in parks of a Latin American city: Santiago as a case study. Urban Ecosyst 21, 645–655 (2018). https://doi.org/10.1007/s11252-018-0743-0

Download citation

Keywords

  • Urban flora
  • Introduced plants
  • City parks
  • Green spaces
  • Ex-situ conservation