Effects of habitat and landscape quality on amphibian assemblages of urban stormwater ponds

Abstract

Urbanisation is one of the most severe drivers of current global biodiversity loss and has contributed to severe declines in many amphibian species. The aim of this study was to determine whether artificial stormwater ponds, designed to control water flow, can act as refuges for amphibians in urban areas. Moreover, we analysed the influence of habitat and landscape quality on amphibian species richness of 46 stormwater ponds (STOPON) in comparison to 46 control ponds (CONTROL).

Our study revealed that environmental conditions clearly varied between STOPON and CONTROL. The most pronounced differences were that STOPON were larger, shallower, sunnier, more isolated by streets and had a greater cover of built-up area and lower cover of arable land surrounding them. Nevertheless, the amphibian assemblages of STOPON and CONTROL were very similar. All nine amphibian species (including three threatened species) detected in this study were found in both pond types. Moreover, species richness (2.8 ± 0.2 vs. 2.3 ± 0.2) and the frequency of each species did not differ between STOPON and CONTROL. The only exception was Pelophylax spp., which occurred more regularly in STOPON. Both habitat and landscape quality affected amphibian species richness; however, the explanatory power of the habitat models was about twice as high as those of the landscape models.

In conclusion, stormwater ponds play an important role for amphibians in urban areas. In comparison to CONTROL, the low landscape quality in the surroundings of STOPON seemed to be compensated by a higher habitat quality due to regular management.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. Alford RA, Dixon PM, Pechmann JHK (2001) Global amphibian population declines. Nature 414:449–500

    Google Scholar 

  2. Baber MJ, Babbitt KJ (2004) Influence of habitat complexity on predator-prey interactions between the fish (Gambusia holbrooki) and tadpoles of Hyla squirella and Gastrophryne carolinensis. Copeia 2004:173–177

    Article  Google Scholar 

  3. Baldwin RF, deMaynadier PG (2009) Assessing threats to pool-breeding amphibian habitat in an urbanizing landscape. Biol Conserv 142:1628–1638

    Article  Google Scholar 

  4. Balmford A, Green RE, Jenkins M (2003) Measuring the changing state of nature. Trends Ecol Evol 18:326–330

    Article  Google Scholar 

  5. Barnosky AD, Matzke N, Tomiya S et al (2011) Has the Earth’s sixth mass extinction already arrived? Nature 471:51–57

    CAS  Article  PubMed  Google Scholar 

  6. Beebee TJC, Griffiths RA (2005) The amphibian decline crisis: a watershed for conservation biology? Biol Conserv 125:271–285

    Article  Google Scholar 

  7. Birx-Raybuck DA, Price SJ, Dorcas ME (2010) Pond age and riparian zone proximity influence anuran occupancy of urban retention ponds. Urban Ecosyst 13:181–190

    Article  Google Scholar 

  8. Booth DB, Jackson RJ (1997) Urbanization of aquatic systems: degradation, thresholds, stormwater detection and the limits of mitigation. J Am Water Resour As 33:1077–1090

    Article  Google Scholar 

  9. Brand AB, Snodgrass JW (2009) Value of artificial habitats for amphibian reproduction in altered landscapes. Conserv Biol 24:295–301

    Article  PubMed  Google Scholar 

  10. City of Münster (2014) Münster – Data and Facts http://www.muenster.de. Accessed 9 July 2016

  11. Collins JP, Storfer A (2003) Global amphibian declines: sorting the hypotheses. Divers Distrib 9:89–98

    Article  Google Scholar 

  12. Coster SS, Powell JSV, Babbitt KJ (2014) Characterizing the width of amphibian movements during post breeding migration. Conserv Biol 28:756–762

    Article  PubMed  Google Scholar 

  13. Cushman SA (2006) Effects of habitat loss and fragmentation on amphibians: a review and prospectus. Biol Conserv 128:231–240

    Article  Google Scholar 

  14. Donnelly R, Marzluff JM (2006) Relative importance of habitat quantity, structure, and spatial pattern to birds in urbanizing environments. Urban Ecosyst 9:99–117

    Article  Google Scholar 

  15. DWD (Deutscher Wetterdienst) (2014) Mittelwerte 30-jähriger Perioden http://www.dwd.de. Accessed 9 July 2016

  16. Ehrenfeld JB (2000) Evaluating wetlands within an urban context. Ecol Eng 15:253–265

    Article  Google Scholar 

  17. Eichel S, Fartmann T (2008) Management of calcareous grasslands for Nickerl’s fritillary (Melitaea aurelia) has to consider habitat requirements of the immature stages, isolation, and patch area. J Insect Conserv 12:677–688

    Article  Google Scholar 

  18. Fahrig L (2003) Effects on habitat fragmentation on biodiversity. Ann Rev Ecol Evol S 34:487–515

    Article  Google Scholar 

  19. Ficetola GF, De Bernardi F (2004) Amphibians in a human-dominated landscape: the community structure is related to habitat features and isolation. Biol Conserv 119:219–230

    Article  Google Scholar 

  20. Gallagher MT (2011) Watershed-scale analysis of pollutant distributions in stormwater management ponds. Urban Ecosyst 14:469–484

    Article  Google Scholar 

  21. Glandt D (2011) Grundkurs Amphibien- und Reptilienbestimmung: Beobachten, Erfassen und Bestimmen aller europäischen Arten. Quelle & Meyer, Wiebelsheim

    Google Scholar 

  22. Glandt D (2014) Wasserfallen als Hilfsmittel der Amphibienerfassung – eine Standortbestimmung. In: Kronshage A, Glandt D (Eds.) Wasserfallen für Amphibien – praktische Anwendung im Artmonitoring. Abhandlungen aus dem Westfälischen Museum für Naturkunde, Münster 77:9–50

  23. Gledhill DG, James P, Davies DH (2008) Pond diversity as a determinant of aquatic species richness in an urban landscape. Landsc Ecol 23:1219–1230

    Article  Google Scholar 

  24. Grimm NB, Faeth SH, Golubiewski NE, Redman CL, Wu J, Bai X, Briggs J (2008) Global change and the ecology of cities. Science 319:756–760

    CAS  Article  PubMed  Google Scholar 

  25. Günther R (ed) (2009) Die Amphibien und Reptilien Deutschlands. Spektrum Akademischer Verlag, Heidelberg

    Google Scholar 

  26. Hachtel M, Schlüpmann M, Thiesmeier B, Weddeling K (eds) (2009) Methoden der Feldherpetologie. Supplement der Zeitschrift für Feldherpetologie 15:1–424

  27. Hachtel M, Schlüpmann M, Weddeling K, Thiesmeier B, Geiger A, Willigalla C (2011) Handbuch der Amphibien und Reptilien Nordrhein-Westfalens. Laurenti Verlag, Bielefeld

    Google Scholar 

  28. Hamer AJ, McDonnell MJ (2008) Amphibian ecology and conservation in the urbanising world: a review. Biol Conserv 141:2423–2449

    Google Scholar 

  29. Hamer AJ, Parris KM (2011) Local and landscape determinants of amphibian communities in urban ponds. Ecol Appl 21(2):379–390

    Article  Google Scholar 

  30. Hamer AJ, Smith PJ, McDonnell MJ (2012) The importance of habitat design and aquatic connectivity in amphibian use of urban stormwater retention ponds. Urban Ecosyst 15:451–471

    Article  Google Scholar 

  31. Hartung H, Ostheim G, Glandt D (1995) Eine neue tierschonende Trichterfalle zum Fang von Amphibien im Laichgewässer. Metelener Schriftenreihe für Naturschutz 5:125–128

    Google Scholar 

  32. Hassall C (2014) The ecology and biodiversity of urban ponds. WIREs Water 1:187–206

    Article  Google Scholar 

  33. Hassall C, Anderson S (2015) Stormwater ponds can contain comparable biodiversity to unmanaged wetlands in urban areas. Hydrobiologia 745:137–149

    Article  Google Scholar 

  34. Hels T, Buchwald E (2001) The effect of road kills on amphibian populations. Biol Conserv 99:331–340

    Article  Google Scholar 

  35. Herrmann J (2012) Chemical and biological benefits in a stormwater wetland in Kalmar, SE Sweden. Limnologica 42:299–309

    CAS  Article  Google Scholar 

  36. Hill MJ, Biggs J, Thornhill I, Briers RA, Gledhill DG, White JC, Wood PJ, Hassall C (2016) Urban ponds as an aquatic biodiversity resource in modified landscapes. Glob Chang Biol. doi:10.1111/gcb.13401

    Google Scholar 

  37. Jahn P, Jahn K (1997) Vergleich quantitativer und halbquantitativer Erfassungsmethoden bei verschiedenen Amphibienarten im Laichgewässer. In: Henle K, Veith M (Eds.) Naturschutzrelevante Methoden der Feldherpetologie. Mertensiella 7:61–69

  38. Jeliazkov A, Chiron F, Garnier J, Besnard A, Silvestre M, Jiguet F (2014) Level-dependence of the relationships between amphibian biodiversity and environment in pond systems within an intensive agricultural landscape. Hydrobiologia 723:7–23

    Article  Google Scholar 

  39. Kret E, Poirazidis K (2015) The influence of habitat features on amphibian distribution in northeastern Greece. J Nat Hist 49:5–8

    Article  Google Scholar 

  40. Lambin EF, Turner BL, Geist HJ et al (2001) The causes of land-use and land-cover change: moving beyond the myths. Glob Environ Chang 11:261–269

    Article  Google Scholar 

  41. LANUV NRW (Landesamt für Natur, Umwelt, und Verbraucherschutz Nordrhein-Westfalen) (2011) Rote Liste und Artenverzeichnis der Lurche – Amphibia – in Nordrhein-Westfalen. 4. Fassung. https://www.lanuv.nrw.de. Accessed 19 September 2016

  42. Le Viol I, Mocq J, Julliard R, Kerbiriou C (2009) The contribution of motorway stormwater retention ponds to the biodiversity of aquatic macroinvertebrates. Biol Conserv 142:3163–3171

    Article  Google Scholar 

  43. Le Viol I, Chiron F, Julliard R, Kerbiriou C (2012) More amphibians than expected in highway stormwater ponds. Ecol Eng 47:146–154

    Article  Google Scholar 

  44. Marsh DM, Trenham PC (2001) Metapopulation dynamics and amphibian conservation. Conserv Biol 15(1):40–49

    Article  Google Scholar 

  45. McKinney ML (2006) Urbanization as a major cause of biotic homogenization. Biol Conserv 127:247–260

    Article  Google Scholar 

  46. Morgan LA, Buttemer WA (1996) Predation by the non-native fish Gambusia holbrooki on small Litoria aurea and L. dentata tadpoles. Aust Zool 30:143–149

    Article  Google Scholar 

  47. Naeem S, Duffy JE, Zavaleta E (2012) The function of biological diversity in an age of extinction. Science 336:1401–1406

    CAS  Article  PubMed  Google Scholar 

  48. Paul MJ, Meyer JL (2001) Streams in the urban landscape. Ann Rev Ecol Evol S 32:333–365

    Article  Google Scholar 

  49. Pechmann JHK, Wilbur HM (1994) Putting declining amphibian populations in perspective – natural fluctuations and human impacts. Herpetologica 50(1):65–84

    Google Scholar 

  50. Pimm SL, Russell GJ, Gittleman JL, Brooks TM (1995) The future of biodiversity. Science 269:347–350

    CAS  Article  PubMed  Google Scholar 

  51. Poniatowski D, Fartmann T (2010) What determines the distribution of a flightless bush-cricket (Metrioptera brachyptera) in a fragmented landscape? J Insect Conserv 14:637–645

    Article  Google Scholar 

  52. R Development Core Team (2016) R: a language and environment for statistical computing http://www.r-project.org. Accessed 04 March 2016

  53. Reh W, Seitz A (1990) The influence of land use on the genetic structure of populations of the common frog (Rana temporaria). Biol Conserv 54:239–249

    Article  Google Scholar 

  54. Sala OE, Chapin FS, Armesto JJ et al (2000) Biodiversity – global biodiversity scenarios for the year 2100. Science 287:1770–1774

    CAS  Article  PubMed  Google Scholar 

  55. Scher O, Thièry A (2005) Odonata, Amphibia and environmental characteristics in motorway stormwater retention ponds (southern France). Hydrobiologia 551:237–251

    Article  Google Scholar 

  56. Semlitsch RD (2008) Differentiating migration and dispersal processes for pond-breeding amphibians. J Wildl Manag 72:260–267

    Article  Google Scholar 

  57. Simon JA, Snodgrass JW, Casey RE, Sparling DW (2009) Spatial correlates of amphibian use of constructed wetlands in an urban landscape. Landsc Ecol 24:361–373

    Article  Google Scholar 

  58. Skelly DK, Werner EE, Cortwright SA (1999) Long-term distributional dynamics of a Michigan amphibian assemblage. Ecology 80:2326–2337

    Article  Google Scholar 

  59. Snep RPH, Opdam PFM, Baveco JM, WallisDeVries MF, Timmermans W, Kwak RGM, Kuypers V (2006) How peri-urban areas can strengthen animal populations within cities: a modeling approach. Biol Conserv 127:345–355

    Article  Google Scholar 

  60. Steele MK, Heffernan JB (2014) Morphological characteristics of urban water bodies: mechanisms of change and implications for ecosystem function. Ecol Appl 24:1070–1084

    CAS  Article  PubMed  Google Scholar 

  61. Stuart NS, Chanson JS, Cox NA, Young BE, Rodrigues ASL, Fischman DL, Waller RW (2004) Status and trends of amphibian declines and extinction worldwide. Science 360:1783–1786

    Article  Google Scholar 

  62. Tetzlaff I (2007) Froschlurche: Die Stimmen aller heimischen Arten. Audio-CD, Ample, Germering

    Google Scholar 

  63. Tonne F (1954) Besser bauen mit Besonnungs- und Tageslicht-Planung. Hofmann, Schorndorf/Stuttgart

    Google Scholar 

  64. Tóth Z, Hoi H, Hettyey A (2011) Intraspecific variation in the egg-wrapping behaviour of female smooth newts, Lissotriton vulgaris. Amphibia-Reptilia 32:77–82

    Article  Google Scholar 

  65. Uhlmann D, Horn W (2001) Hydrobiologie der Binnengewässer. Eugen Ulmer, Stuttgart

    Google Scholar 

  66. United Nations (2010) World urbanization prospects: the 2009 revision. United Nations, New York

    Google Scholar 

  67. Vági B, Kovács T, Bancila R, Hartel T, Anthony BP (2013) A landscape-level study on the breeding site characteristics of ten amphibian species in Central Europe. Amphibia-Reptilia 34:63–73

    Article  Google Scholar 

  68. Villareal EL, Semadeni-Davies A, Bengtsson L (2004) Inner city stormwater control using a combination of best management practices. Ecol Eng 22:279–298

    Article  Google Scholar 

  69. von Bülow B (2014) Erfahrungen mit Unterwasserfallen für Amphibien. In: Kronshage A, Glandt D (Eds.) Wasserfallen für Amphibien – praktische Anwendung im Artmonitoring. Abhandlungen aus dem Westfälischen Museum für Naturkunde, Münster 77:179–188

  70. Vos CC, Chardon JP (1998) Effects of habitat fragmentation and road density on the distribution pattern of the moor frog Rana arvalis. J Appl Ecol 35:44–56

    Article  Google Scholar 

  71. Wake DB (1991) Declining amphibian populations. Science 253:860–860

    CAS  Article  PubMed  Google Scholar 

  72. Wake DB, Vredenburg VT (2008) Are we in the midst of the sixth mass extinction? A view from the world of amphibians. P Natl Acad Sci USA 105:11466–11473

    CAS  Article  Google Scholar 

  73. Werner EE, Glennemeier KS (1999) Influence of forest canopy cover on the breeding pond distribution of several amphibian species. Copeia 1999:1–12

    Article  Google Scholar 

  74. Willigalla C, Fartmann T (2012) Patterns in the diversity of dragonflies (Odonata) in cities across Central Europe. Eur J Entomol 109:235–245

    Article  Google Scholar 

Download references

Acknowledgements

The study was funded by a Ph.D. scholarship of the Deutsche Bundesstiftung Umwelt (DBU). J. Möhring and M. Genius gave permissions for the investigation. We would like to thank G. Stuhldreher and J. Thiele for advice on statistical methods. We are grateful to C. Nilon, M. Streitberger, M. Zundel and two anonymous reviewers for valuable comments on an earlier version of the manuscript. Furthermore, we thank K.-H. Holtmann and M. Zundel for assistance during field work.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Lisa Holtmann.

Appendix 1

Appendix 1

Table 5 Statistics of single GLM (estimates ± SE) at the habitat level: Relationship between species number and all environmental parameters in stormwater ponds (STOPON, Gaussian error structure) and control ponds (CONTROL, Poisson error structure), respectively. n.s. = not significant, * P < 0.05, ** P < 0.01, *** P < 0.001

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Holtmann, L., Philipp, K., Becke, C. et al. Effects of habitat and landscape quality on amphibian assemblages of urban stormwater ponds. Urban Ecosyst 20, 1249–1259 (2017). https://doi.org/10.1007/s11252-017-0677-y

Download citation

Keywords

  • Aquatic connectivity
  • Fragmented landscape
  • Global change
  • Landscape structure
  • Retention pond
  • Species richness