Urban Ecosystems

, Volume 20, Issue 1, pp 217–225 | Cite as

Bat boxes in urban non-native forests: a popular practice that should be reconsidered

  • Adrià López-Baucells
  • Xavier Puig-Montserrat
  • Ignasi Torre
  • Lídia Freixas
  • Maria Mas
  • Antoni Arrizabalaga
  • Carles Flaquer
Article

Abstract

Impact mitigation practices are currently one of the hottest topics in conservation and regarded as priorities worldwide. Forest bat populations are known to provide important ecosystem services such as pest control and bat boxes have become one of the most popular management options for counteracting the loss of roosts. However, bat boxes tend to be employed in non-native forests near highly humanized areas where human disturbance is higher. The aim of this study was to evaluate how the surrounding landscape composition affects bat box occupancy in urban non-native forests along the Mediterranean corridor in the Northeastern Iberian Peninsula. Two hundred wooden bat boxes were monitored in young non-native forests in the period 2004–2012. The influence of land cover on occupancy rate of bat boxes was analysed at the landscape level in a 5 km buffer around bat-box stations. In total, 1659 inspections were carried out, in which a 15 % occupancy rate was detected. Bat boxes hosted three different species (Pipistrellus pygmaeus, Pipistrellus kuhlii and Nyctalus leisleri). More than 70 % of the occupancy can be explained by habitat and spatial composition. The presence of urban areas around bat boxes tends to have a negative impact on bat occupation rates; by contrast, forest coverage has a positive effect, especially for the tree-dwelling bats. These patterns could be associated with the large number of available roosts in buildings, microhabitat or phylopatry. Thus, to increase success, we suggest that landscape composition should be considered when using bat boxes for conservation.

Keywords

Biodiversity conservation Chiroptera Landscape ecology Mediterranean Mitigation practices Urbanization 

References

  1. Alcalde JT, Campion J, Fabo J, Marín F, Artázco A, Martínez I, Antón I (2013) Ocupación de cajas-refugio por murciélagos en Navarra. Barb 6(1):34–43. doi:10.14709/BarbJ.6.1.2013.05
  2. Bartonička T, Řehák Z (2007) Influence of the microclimate of bat boxes on their occupation by the soprano pipistrelle Pipistrellus pygmaeus: possible cause of roost switching. Acta Chiropterol 9(2):517–526. doi:10.3161/1733-5329(2007)9[517:IOTMOB]2.0.CO;2 CrossRefGoogle Scholar
  3. Battersby J (2010) Guidelines for Surveillance and Monitoring of European Bats. EUROBATS Publication Series. No. 5. UNEP / EUROBATS Secretariat, Bonn, Germany. ISBN 978–92–95058–27–9Google Scholar
  4. Benzal J (1991) Population dynamics of the brown long-eared bat (Plecotus auritus) occupying bird boxes in a pine forest in central Spain. Neth J Zool 41:241–249. doi:10.1163/156854291X00171 CrossRefGoogle Scholar
  5. Bocard D, Legendre P, Drapeau P (1992) Partialling out the space component of ecological variation. Ecol 73:1045–1055CrossRefGoogle Scholar
  6. Borcard D, Legendre P, Avois-Jacquet C, Tuomisto H (2004) Dissecting the spatial structure of ecological data at multiple scales. Ecol 85:1826–1832. doi:10.1890/03-3111 CrossRefGoogle Scholar
  7. Boston ESM (2008) Molecular ecology and conservation genetics of the Leisler's bat (Nyctalus leisleri) in Ireland. Dissertation, Queen's University of BelfastGoogle Scholar
  8. Boston ES, Roué SG, Montgomery WI, Prodöhl PA (2012) Kinship, parentage, and temporal stability in nursery colonies of Leisler’s bat (Nyctalus leisleri). Behav Ecol 23(5):1015–1021. doi:10.1093/beheco/ars065 CrossRefGoogle Scholar
  9. Boughey KL, Lake IR, Haysom KA, Dolman PM (2011) Effects of landscape-scale broadleaved woodland configuration and extent on roost location for six bat species across the UK. Biol Conserv 144(9):2300–2310. doi:10.1016/j.biocon.2011.06.008 CrossRefGoogle Scholar
  10. Boyd IL, Stebbings RE (1989) Population changes of brown long-eared bats (Plecotus auritus) in bat boxes in Thetford Forest. J Appl Ecol 26:101–112CrossRefGoogle Scholar
  11. Brigham RM, Vonhof MJ, Barclay RMR, Gwilliam JC (1997) Roosting behaviour and roost-site preferences of forest-dwelling California bats (Myotis californicus). J Mammal 78:1231–1239CrossRefGoogle Scholar
  12. Burnham KP, Anderson DR (2004) Multimodel inference understanding AIC and BIC in model selection. Sociol meth res 33(2):261–304. doi:10.1177/0049124104268644 CrossRefGoogle Scholar
  13. Chambers CL, Alm V, Siders MS, Rabe MJ (2002) Use of artificial roosts by forest-dwelling bats in northern Arizona. Wildlife Soc B 30(4):1085–1091Google Scholar
  14. Dondini G, Vergari S (2009) Harem size and male mating tactics in Nyctalus leisleri (Kuhl, 1817) (Chiroptera, Vespertilionidae). Hystrix 20(2):147–154. doi:10.4404/hystrix-20.2-4445 Google Scholar
  15. Dray S, Dufour AB (2007) The ade4 package: implementing the duality diagram for ecologists. J Stat Softw 22(4):1–20CrossRefGoogle Scholar
  16. Flaquer C, Puig-Montserrat X (2012) Els Ratpenats de Catalunya. Guia de Camp. Edicions Brau, BarcelonaGoogle Scholar
  17. Flaquer C, Ruiz-Jarillo R, Torre I, Arrizabalaga A (2005) First resident population of Pipistrellus nathusii (Keyserling and Blasius, 1839) in the Iberian Peninsula. Acta Chiropterol 7:183–188. doi:10.3161/1733-5329(2005)7[183:FRPOPN]2.0.CO;2 CrossRefGoogle Scholar
  18. Flaquer C, Torre I, Jarillo R (2006) The value of bat boxes in the conservation of Pipistrellus pygmaeus in wetland rice paddies. Biol Conserv 128:223–230. doi:10.1016/j.biocon.2005.09.030 CrossRefGoogle Scholar
  19. Flaquer C, Torre I, Arrizabalaga A (2007) Selección de refugios, gestión forestal y conservación de los quirópteros forestales. In: Camprodon J, Plana E. (ed) Conservación de la biodiversidad y gestión forestal: su aplicación en la fauna vertebrada, Edicions de la Universitat de Barcelona pp: 469–488.Google Scholar
  20. Flaquer C, Puig X, Fàbregas E, Guixé D, Torre I, Ràfols RG, Páramo F, Camprodon J, Cumplido JM, Jarillo RR, López-Baucells A, Freixas L, Arrizabalaga A (2010) Revisión y aportación de datos sobre quirópteros de Catalunya: propuesta de lista roja. Galemys 22(1):21–54Google Scholar
  21. Flaquer C, Puig X, López-Baucells A, Torre I, Freixas L, Mas M, Porres X, Arrizabalaga A (2014) Could overheating turn bat boxes into death traps? Barb 7(1):46–53. doi:10.14709/BarbJ.7.1.2014.08
  22. Geoffrey C, Agnew SG (2002) The value of bat boxes for attracting hollow-dependent fauna to farm forestry plantations in southeast Queensland. Ecol. Manage. Restor. 3(1):37–46. doi:10.1046/j.1442-8903.2002.00088.x CrossRefGoogle Scholar
  23. Ibáñez C, Guillén A, Agirre-Mendi PT, Juste J, Schreur G, Cordero AI, Popa-Lisseanu AG (2009) Sexual Segregation in Iberian Noctule Bats. J Mammal 90(1):235–224. doi:10.1644/08-MAMM-A-037.1 CrossRefGoogle Scholar
  24. Jones AJM, McLeish AP (2004) The bat worker's manual. 3rd Edition. Joint nature conservation committee: UK populations 172Google Scholar
  25. Kerth G, Weissmann K, König B (2001) Day roost selection in female Bechstein’s bats (Myotis bechsteinii): a field experiment to determine the influence of roost temperature. Oecologia 126:1–9. doi:10.1007/s004420000489 CrossRefGoogle Scholar
  26. Kunz TH (1982) In: Kunz TH (ed) Roosting ecology of bats. In: “Ecology of Bats”. Plenum Press, New YorkCrossRefGoogle Scholar
  27. Kunz TH, Lumsden LF (2003) In: Kunz TH, Fenton MB (eds) Ecology of cavity and foliage bats. In “Bat ecology”. University of Chicago Press, ChicagoGoogle Scholar
  28. Kunz TH, Parsons S (2009) Ecological and behavioral methods for the study of bats. Johns Hopkins University Press, BaltimoreGoogle Scholar
  29. Kunz TH, de Braun TE, Bauer D, Lobova T, Fleming TH (2011) Ecosystem services provided by bats. Ann N Y Acad Sci 1223:1–38. doi:10.1111/j.1749-6632.2011.06004.x. CrossRefPubMedGoogle Scholar
  30. Leps J, Smilauer P (2003) Multivariate analysis of ecological data using CANOCO. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  31. Lourenço SI, Palmeirim JM (2004) Influence of temperature in roost selection by Pipistrellus pygmaeus (Chiroptera): relevance for design of bat boxes. Biol Conserv 119:237–243. doi:10.1016/j.biocon.2003.11.006 CrossRefGoogle Scholar
  32. Mcleod AI, Xu CJ (2014) Best subset glm using AIC, BIC, EBIC, BICq or cross-validation. R package version 0.34. https://cran.r-project.org/web/packages/bestglm/. Accessed 3 Mar 2014
  33. Patriquin KJ, Barclay RMR (2003) Foraging by bats in cleared, tinned and unharvested boreal forest. J Appl Ecol 40:646–657. doi:10.1046/j.1365-2664.2003.00831.x CrossRefGoogle Scholar
  34. Pierson ED (1998) In: Kunz TH, Racey PA (eds) Tall trees, deep holes and scarred landscapes: conservation biology of North American bats. In “Bat Biology and Conservation”. Smithsonian Institution Press, Washington, D. C.Google Scholar
  35. Puig-Montserrat X, Torre I, López-Baucells A, Guerrieri E, Monti MM, Ràfols-García R, Ferrer X, Gisbert D, Flaquer C (2015) Pest control service provided by bats in Mediterranean rice paddies: linking agroecosystems structure to ecological functions. Mamm Biol. 80(3):237–245. doi:10.1016/j.mambio.2015.03.008 Google Scholar
  36. Racey PA (1998) In: Kunz TH, Racey PA (eds) Ecology of European bats in relation to their conservation. In “Bat biology and Conservation”. Smithsonian Institution Press, Washington, D.CGoogle Scholar
  37. Ruczynski I, Bogdanowicz W (2005) Roost cavity selection by Nyctalus noctula and N. leisleri (Vespertilionidae, Chiroptera) in Bialowieza primeval forest, eastern Poland. J Mammal 86(5):921–930. doi:10.1644/1545-1542(2005)86[921:RCSBNN]2.0.CO;2 CrossRefGoogle Scholar
  38. Ruczyński I, Bogdanowicz W (2008) Summer roost selection by tree-dwelling bats Nyctalus noctula and N. leisleri: A multiscale analysis. J Mammal 89(4):942–951. doi:10.1644/07-MAMM-A-134.1 CrossRefGoogle Scholar
  39. Rueegger N (2016) Bat boxes - a review of their use and application, past, present and future. Acta Chiropt 18(1):279–299. doi:10.3161/15081109ACC2016.18.1.017
  40. Russo D, Ancillotto L (2015) Sensitivity of bats to urbanization: a review. Mamm Biol - Zeitschrift für Säugetierkunde, 80(3):205–212. doi:10.1016/j.mambio.2014.10.003
  41. Russo D, Cistrone L, Jones G, Mazzoleni S (2004) Roost selection by barbastelle bats (Barbastella barbastellus, chiroptera: vespertilionidae) in beech woodlands of central Italy: consequences for conservation. Biol Conserv 117:73–81. doi:10.1016/S0006-3207(03)00266-0 CrossRefGoogle Scholar
  42. Russo D, Cistrone L, Jones G (2005) Spatial and temporal patterns of roost use by tree-dwelling barbastelle bats Barbastella barbastellus. Ecography 28(6):769–776CrossRefGoogle Scholar
  43. Russo D, Cistrone L, Jones G (2007) Emergence time in forest bats: the influence of canopy closure. Acta Oecol 31(1):119–126CrossRefGoogle Scholar
  44. Torre I, Díaz M, Arrizabalaga A (2014) Additive effects of climate and vegetation structure on the altitudinal distribution of greater white-toothed shrew Crocidura russula in a Mediterranean mountain range. Acta Theriol 59:139–147. doi:10.1007/s13364-013-0128-y CrossRefGoogle Scholar
  45. Tuttle M, Kiser M, Kiser S (2004) The Bat House Builder’s Handbook. Bat Conservation International Inc, AustinGoogle Scholar
  46. Wei T, Simko V (2016) Package ‘corrplot’. R package version 0.77. https://cran.r-project.org/web/packages/corrplot/. Accessed 21 Apr 2016

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Granollers Museum of Natural SciencesGranollersSpain
  2. 2.Center for Ecology, Evolution and Environmental Changes (cE3c)Faculdade de Ciências da Universidade de LisboaLisbonPortugal
  3. 3.Galanthus AssociationCelràSpain

Personalised recommendations