Urban Ecosystems

, Volume 19, Issue 2, pp 705–720

Persistence and survival of the spider Nephila plumipes in cities: do increased prey resources drive the success of an urban exploiter?

Article

Abstract

Species that successfully inhabit urban ecosystems are rare, and urbanisation often drives localised extinctions of native species. Nonetheless, some species take advantage of the novel conditions available in cities and increase in abundance. Trends in the abundance and distribution of species in urban areas have received much attention, but the precise elements of urban ecosystems that affect the survival of urban-dwelling species are largely unknown. Animals that successfully exploit urban environments may do so because of increases in the availability of resources or habitats. Here we assess the effects of anthropogenic landscapes and prey abundance on the persistence of an orb-weaving spider, Nephila plumipes. We assessed spider persistence for six months in situ along an urban gradient in Sydney. We then transplanted spiders from a common garden into sites along the gradient, monitored their persistence in the new environment and measured a suite of environmental variables at local and landscape scales. The abundance of prey was closely linked with spider persistence, in both the survey and the transplant experiment, and was positively associated with anthropogenic habitats. The surveyed spiders survived longer when located closer to the coast and transplanted spiders persisted longer in smaller sites with more impervious surfaces and reduced vegetation cover. Our study shows that urbanisation has a strong effect on potential prey abundance and can lead to increased persistence of N. plumipes, demonstrating the broad impacts that habitat disturbance can have on the life history and trophic interactions of city-dwelling animals.

Keywords

Urbanisation Microhabitat Survival Prey abundance Resources Urban exploiter 

Supplementary material

11252_2015_518_MOESM1_ESM.pdf (152 kb)
Supplementary Fig. 1Map of sites used in the survey and transplant experiment. Sydney, New South Wales, Australia. (PDF 152 kb)

References

  1. Austad SN (1989) Life extension by dietary restriction in the bowl and doily spider, Frontinella pyramitela. Exp Gerontol 24:83–92. doi:10.1016/0531-5565(89)90037-5 CrossRefPubMedGoogle Scholar
  2. Bang C, Faeth SH (2011) Variation in arthropod communities in response to urbanization: Seven years of arthropod monitoring in a desert city. Landscape Urban Plan 103:383–399. doi:10.1016/j.landurbplan.2011.08.013 CrossRefGoogle Scholar
  3. Blair RB (1996) Land use and avian species diversity along an urban gradient. Ecol Appl 6:506–519CrossRefGoogle Scholar
  4. Bradley CA, Altizer S (2007) Urbanization and the ecology of wildlife diseases. Trends Ecol Evol 22:95–102. doi:10.1016/j.tree.2006.11.001 CrossRefPubMedGoogle Scholar
  5. Cadenasso ML, Pickett STA, Schwarz K (2007) Spatial heterogeneity in urban ecosystems: reconceptualizing land cover and a framework for classification. Front Ecol Eviron 5:80–88. doi:10.1890/1540-9295(2007)5[80:shiuer]2.0.co;2 CrossRefGoogle Scholar
  6. Christie FJ, Hochuli DF (2005) Elevated levels of herbivory in urban landscapes: are declines in tree health more than an edge effect? Ecol Soc 10(1):10Google Scholar
  7. Christie F, Cassis G, Hochuli D (2010) Urbanization affects the trophic structure of arboreal arthropod communities. Urban Ecosyst 13:169–180. doi:10.1007/s11252-009-0115-x CrossRefGoogle Scholar
  8. Dale AG, Frank SD (2014) Urban warming trumps natural enemy regulation of herbivorous pests. Ecol Appl 24:1596–1607. doi:10.1890/13-1961.1 CrossRefGoogle Scholar
  9. Eisenbeis G, Hänel A, McDonnell M, Hahs A, Breuste J (2009) Light pollution and the impact of artificial night lighting on insects. ecology of cities and towns: a comparative approach. Cambridge University Press, New York, pp 243–263CrossRefGoogle Scholar
  10. Eskafi FM, Frazier JL, Hocking RR, Norment BR (1977) Influence of environmental factors on longevity of the brown recluse spider. J Med Entomol 14:221–228. doi:10.1093/jmedent/14.2.221 CrossRefPubMedGoogle Scholar
  11. Faeth SH, Warren PS, Shochat E, Marussich WA (2005) Trophic dynamics in urban communities. Bioscience 55:399–407. doi:10.1641/0006-3568(2005)055[0399:tdiuc]2.0.co;2 CrossRefGoogle Scholar
  12. Gibb H, Hochuli DF (2002) Habitat fragmentation in an urban environment: large and small fragments support different arthropod assemblages. Biol Conserv 106:91–100CrossRefGoogle Scholar
  13. Greenstone MH (1984) Determinants of web spider species diversity: vegetation structural diversity vs. prey availability. Oecologia 62:299–304. doi:10.1007/bf00384260 CrossRefGoogle Scholar
  14. Gunnarsson B (1996) Bird predation and vegetation structure affecting spruce-living arthropods in a temperate forest. J Anim Ecol 65:389–397. doi:10.2307/5885 CrossRefGoogle Scholar
  15. Gunnarsson B, Wiklander K (2015) Foraging mode of spiders affects risk of predation by birds. Biol J Linn Soc 115:58–68. doi:10.1111/bij.12489 CrossRefGoogle Scholar
  16. Harvey MS, Austin AD, Adams M (2007) The systematics and biology of the spider genus Nephila (Araneae: Nephilidae) in the Australasian region. Invertebr Syst 21:407–451. doi:10.1071/IS05016 CrossRefGoogle Scholar
  17. Herberstein ME, Elgar MA (1994) Foraging strategies of Eriophora transmarina and Nephila plumipes (Araneae: Araneoidea): nocturnal and diurnal orb-weaving spiders. Aust J Ecol 19:451–457. doi:10.1111/j.1442-9993.1994.tb00511.x CrossRefGoogle Scholar
  18. Higgins L (2000) The interaction of season length and development time alters size at maturity. Oecologia 122:51–59. doi:10.1007/pl00008835 CrossRefGoogle Scholar
  19. Higgins L, Goodnight C (2011) Developmental response to low diets by giant Nephila clavipes females (Araneae: Nephilidae). J Arachnol 39:399–408. doi:10.1636/B11-18.1 CrossRefGoogle Scholar
  20. Jakob EM, Marshall SD, Uetz GW (1996) Estimating fitness: a comparison of body condition indices. Oikos 77:61–67CrossRefGoogle Scholar
  21. Johnson JC, Trubl PJ, Miles LS (2012) Black widows in an urban desert: city-living compromises spider fecundity and egg investment despite urban prey abundance. Am Midl Nat 168:333–340CrossRefGoogle Scholar
  22. Kark S, Iwaniuk A, Schalimtzek A, Banker E (2007) Living in the city: can anyone become an ‘urban exploiter'? J Biogeogr 34:638–651. doi:10.1111/j.1365-2699.2006.01638.x CrossRefGoogle Scholar
  23. Karlsson B, Van Dyck H (2005) Does habitat fragmentation affect temperature-related life-history traits? a laboratory test with a woodland butterfly. Proc R Soc B 272:1257–1263. doi:10.1098/rspb.2005.3074 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Kasumovic MM, Brooks RC, Andrade MCB (2009) Body condition but not dietary restriction prolongs lifespan in a semelparous capital breeder. Biol Lett 5:636–638. doi:10.1098/rsbl.2009.0335 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Kleinteich A, Wilder SM, Schneider JM (2015) Contributions of juvenile and adult diet to the lifetime reproductive success and lifespan of a spider. Oikos 124:130–138CrossRefGoogle Scholar
  26. Kralj-Fišer S, Schneider JM (2012) Individual behavioural consistency and plasticity in an urban spider. Anim Behav 84:197–204. doi:10.1016/j.anbehav.2012.04.032 CrossRefGoogle Scholar
  27. Li D (2002) The combined effects of temperature and diet on development and survival of a crab spider, Misumenops tricuspidatus (Fabricius) (Araneae: Thomisidae). J Therm Biol 27:83–93. doi:10.1016/S0306-4565(01)00018-3 CrossRefGoogle Scholar
  28. Li D, Jackson RR (1996) How temperature affects development and reproduction in spiders: a review. J Therm Biol 21:245–274. doi:10.1016/0306-4565(96)00009-5 CrossRefGoogle Scholar
  29. Lövei GL, Magura T, Tóthmérész B, Ködöböcz V (2006) The influence of matrix and edges on species richness patterns of ground beetles (Coleoptera: Carabidae) in habitat islands. Global Ecol Biogeogr 15:283–289. doi:10.1111/j.1466-8238.2005.00221.x CrossRefGoogle Scholar
  30. Lowe EC, Wilder SM, Hochuli DF (2014) Urbanisation at multiple scales is associated with larger size and higher fecundity of an orb-weaving spider. PLoS ONE 9:e105480. doi:10.1371/journal.pone.0105480 CrossRefPubMedPubMedCentralGoogle Scholar
  31. McDonnell M, Hahs A (2008) The use of gradient analysis studies in advancing our understanding of the ecology of urbanizing landscapes: current status and future directions. Landscape Ecol 23:1143–1155. doi:10.1007/s10980-008-9253-4 CrossRefGoogle Scholar
  32. McIntyre NE, Rango J, Fagan WF, Faeth SH (2001) Ground arthropod community structure in a heterogeneous urban environment. Landscape Urban Plan 52:257–274. doi:10.1016/s0169-2046(00)00122-5 CrossRefGoogle Scholar
  33. McKinney ML (2002) Urbanization, biodiversity, and conservation. Bioscience 52:883–890. doi:10.1641/0006-3568(2002)052[0883:ubac]2.0.co;2 CrossRefGoogle Scholar
  34. McKinney ML (2006) Urbanization as a major cause of biotic homogenization. Biol Conserv 127:247–260. doi:10.1016/j.biocon.2005.09.005 CrossRefGoogle Scholar
  35. McKinney M (2008) Effects of urbanization on species richness: a review of plants and animals. 11:161–176 doi:10.1007/s11252-007-0045-4
  36. McNett BJ, Rypstra AL (2000) Habitat selection in a large orb-weaving spider: vegetational complexity determines site selection and distribution. Ecol Entomol 25:423–432. doi:10.1046/j.1365-2311.2000.00279.x CrossRefGoogle Scholar
  37. Meineke EK, Dunn RR, Sexton JO, Frank SD (2013) Urban warming drives insect pest abundance on street trees. PLoS ONE 8:e59687. doi:10.1371/journal.pone.0059687 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Melles S, Glenn SM, Martin K et al. (2003) Urban bird diversity and landscape complexity: species-environment associations along a multiscale habitat gradient. Ecol Soc 7Google Scholar
  39. Miyashita T (1986) Growth, egg production, and population density of the spide, Nephila clavata in relation to food conditions in the field. Res Popul Ecol 28:135–149. doi:10.1007/BF02515542 CrossRefGoogle Scholar
  40. Newbold T et al (2015) Global effects of land use on local terrestrial biodiversity. Nature 520:45–50. doi:10.1038/nature14324 CrossRefPubMedGoogle Scholar
  41. Penick CA, Savage AM, Dunn RR (2015) Stable isotopes reveal links between human food inputs and urban ant diets. Proc R Soc B 282:1806. doi:10.1098/rspb.2014.2608 CrossRefGoogle Scholar
  42. Polis GA, Hurd SD (1995) Extraordinarily high spider densities on islands: flow of energy from the marine to terrestrial food webs and the absence of predation. PNAS 92:4382–4386CrossRefPubMedPubMedCentralGoogle Scholar
  43. Raupp MJ, Shrewsbury PM, Herms DA (2010) Ecology of herbivorous arthropods in urban landscapes. Annu Rev Entomol 55:19–38. doi:10.1146/annurev-ento-112408-085351 CrossRefPubMedGoogle Scholar
  44. Riechert H (2000) Local population success in heterogeneous habitats: reciprocal transplant experiments completed on a desert spider. J Evolution Biol 13:541–550. doi:10.1046/j.1420-9101.2000.00176.x CrossRefGoogle Scholar
  45. Rubio A, Bellocq MI, Vezzani D (2013) Macro- and microenvironmental factors affecting tyre-breeding flies (Insecta: Diptera) in urbanised areas. Ecol Entomol 38:303–314. doi:10.1111/een.12016 CrossRefGoogle Scholar
  46. Rypstra AL (1985) Aggregations of Nephila clavipes (L.)(Araneae, Araneidae) in relation to prey availability. J Arachnol 71–78Google Scholar
  47. Sandoval C (1994) Plasticity in web design in the spider Parawixia bistriata: a response to variable prey type. Funct Ecol 8:701–707CrossRefGoogle Scholar
  48. Schneider JM, Elgar MA (2001) Sexual cannibalism and sperm competition in the golden orb-web spider Nephila plumipes (Araneoidea): female and male perspectives. Behav Ecol 12:547–552. doi:10.1093/beheco/12.5.547 CrossRefGoogle Scholar
  49. Shochat E, Stefanov WL, Whitehouse MEA, Faeth SH (2004) Urbanization and spider diversity: influences of human modification of habitat structure and productivity. Ecol Appl 14:268–280. doi:10.1890/02-5341 CrossRefGoogle Scholar
  50. Shochat E, Lerman SB, Anderies JM, Warren PS, Faeth SH, Nilon CH (2010) Invasion, competition, and biodiversity loss in urban ecosystems. Bioscience 60:199–208. doi:10.1525/bio.2010.60.3.6 CrossRefGoogle Scholar
  51. Sorace A, Gustin M (2009) Distribution of generalist and specialist predators along urban gradients. Landscape Urban Plan 90:111–118. doi:10.1016/j.landurbplan.2008.10.019 CrossRefGoogle Scholar
  52. Spencer RP (1990) Relationship of reproductive success and median longevity to food intake, in the captive female spider Frontinella pyramitela. Mech Ageing Dev 55:9–13. doi:10.1016/0047-6374(90)90102-L CrossRefPubMedGoogle Scholar
  53. Sumasgutner P, Nemeth E, Tebb G, Krenn HW, Gamauf A (2014) Hard times in the city—attractive nest sites but insufficient food supply lead to low reproduction rates in a bird of prey. Front Zool 11:13. doi:10.1186/1742-9994-11-48 CrossRefGoogle Scholar
  54. Trubl P, Gburek T, Miles L, Johnson J (2012) Black widow spiders in an urban desert: population variation in an arthropod pest across metropolitan Phoenix, AZ. Urban Ecosyst 15:599–609. doi:10.1007/s11252-011-0223-2 CrossRefGoogle Scholar
  55. Varet M, Pétillon J, Burel F (2011) Comparative responses of spider and carabid beetle assemblages along an urban–rural boundary gradient. J Arachnol 39:236–243. doi:10.1636/cp10-82.1 CrossRefGoogle Scholar
  56. Vollrath F (1985) Web spider’s dilemma: a risky move or site dependent growth. Oecologia 68:69–72. doi:10.1007/BF00379476 CrossRefGoogle Scholar
  57. Voss SC, Main BY, Dadour IR (2007) Habitat preferences of the urban wall spider Oecobius navus (Araneae, Oecobiidae). Aust J Ento 46:261–268. doi:10.1111/j.1440-6055.2007.00616.x CrossRefGoogle Scholar
  58. Weng Q, Lu D, Schubring J (2004) Estimation of land surface temperature–vegetation abundance relationship for urban heat island studies. Remote Sens Environ 89:467–483. doi:10.1016/j.rse.2003.11.005 CrossRefGoogle Scholar
  59. Wise DH (1995) Spiders in ecological webs. Cambridge University Press, CambridgeGoogle Scholar
  60. Wise DH, Chen B (1999) Impact of intraguild predators on survival of a forest-floor wolf spider. Oecologia 121:129–137. doi:10.1007/s004420050914 CrossRefGoogle Scholar
  61. Yuan F, Bauer ME (2007) Comparison of impervious surface area and normalized difference vegetation index as indicators of surface urban heat island effects in Landsat imagery. Remote Sens Environ 106:375–386. doi:10.1016/j.rse.2006.09.003 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.School of Biological SciencesThe University of SydneySydneyAustralia
  2. 2.Department of Integrative BiologyOklahoma State UniversityStillwaterUSA

Personalised recommendations