Skip to main content

Advertisement

Log in

Urban climate change-related effects on extreme heat events in Rostock, Germany

  • Published:
Urban Ecosystems Aims and scope Submit manuscript

Abstract

The urban heat island effect poses a challenge in several cities, and may affect human and ecosystem health. It was proven that relatively small urban conglomerations in mid-latitudes, such as the case study region of Rostock, have undergone a considerable effect recently, noticeable particularly in the warm season. Due to climatic changes, these effects are expected to alter in intensity and/or frequency. This was investigated using a model that focuses on interactions between land use and surface temperatures and on specific air conditions in cities. The model enables urban surface temperature differences to be projected with regard to different assumptions of (future or planned) land use/land cover and its specific characteristics. In addition, 99th percentile summer days from the period 1961–1990 and scenario runs from regional climate models (RCMs) were used as an example of extreme heat events. The frequency of occurrence of extreme heat events resembling those occurring in the present day will be up to four (2041–2070) and six (2071–2100) times higher, respectively. Furthermore, the average temperature on defined extreme heat days will rise by 1.6 to 3.4 °C (2041–2070) and 2.2 to 4.4 °C (2071–2100), respectively. The model calculated no significant effects for differences in maximum surface temperatures between land use classes. Some parts of land use change scenarios constructed during scenario workshops in Rostock were integrated into the surface temperature model with regard to climate change adaptation. The results revealed a range of outcomes, from an enlargement of vulnerable areas to the near eradication of climate change-related heat effects in several areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Albers M, Deppisch S (2013) Resilience in the light of climate change: useful approach or empty phrase for spatial planning? Eur Plan Stud 21(10):1598–1610. doi:10.1080/09654313.2012.722961

    Article  Google Scholar 

  • Alberti M, Marzluff JM, Shulenberger E, Bradley G, Ryan C, Zumbrunnen C (2003) Integrating humans into ecology: opportunities and challenges for studying urban ecosystems. Bioscience 52(12):1169–1179

    Article  Google Scholar 

  • Arnfield AJ (2003) Two decades of urban climate research: a review of turbulence, exchanges of energy and water, and the urban heat island. Int Jou of Climat 23:1–26

    Article  Google Scholar 

  • Baccini M, Kosatsky T, Analitis A, Anderson HR, D’Ovidio M, Menne B (2011) Impact of heat on mortality in 15 European cities: attributable deaths under different weather scenarios. Jou Epidem Comm Health 65:64–70

    Article  CAS  Google Scholar 

  • Bärring L, Mattsson JO, Lindqvist S (1985) Canyon geometry, street temperatures and urban heat island in Malmö, Sweden. J Clim 5:433–444

    Article  Google Scholar 

  • Bass B, Krayenhoff ES, Martilli A, Stull RB, Auld H (2003) The impact of green roofs on Toronto’s urban heat island. In: Proceedings of the First North American Green Roof Conference: Greening Rooftops for Sustainable Communities. Chicago

  • Bengtsson L, Grahn L, Olsson J (2005) Hydrological function of a thin extensive green roof in southern Sweden. Nord Hydrol 36(3):259–268

    Google Scholar 

  • Berndtsson JC (2010) Green roof performance towards management of runoff water quantity and quality: A review. Ecol Eng 36(4):(351–360). doi:10.1016/j.ecoleng.2009.12.014

  • Böhm U, Kücken M, Ahrens W, Block A, Hauffe D, Keuler K, Rockel B, Will, A (2006) CLM - the climate version of LM: Brief description and long term application. COSMO Newsletter 6:225–235

  • Brenneisen S (2003) The benefits of biodiversity from green roofs-key design consequences. Conference proceedings Greening Rooftops for Sustainable Communities. Chicago, In

    Google Scholar 

  • Cairns JJ, Pratt JR (1995) The relationship between ecosystem health and delivery of ecosystem services. In: Rapport DJ, Gaudet C, Galow P (eds) Evaluating and monitoring the health of large-scale ecosystems. Springer, Heidelberg, pp. 273–294

    Google Scholar 

  • Currie B, Bass B (2008) Estimates of air pollution mitigation with green plants and green roofs using the UFORE model. Urban Ecosyst 11(4):409–422. doi:10.1007/s11252-008-0054-y

    Article  Google Scholar 

  • Dunnett N, Nagase A, Hallam A (2008) The dynamics of planted and colonising species on a green roof over six growing seasons 2001–2006: influence of substrate depth. Urban Ecosyst 11(4):373–384. doi:10.1007/s11252-007-0042-7

    Article  Google Scholar 

  • Eliasson I (1996) Urban nocturnal air temperatures, street geometry and land use. Atmos Environ 30(3):379–392

    Article  CAS  Google Scholar 

  • Enke W, Kreienkamp F (2006) WETTREG B1 SCENARIO. UBA PROJECT 2061-2070

  • Fallmann J, Emeis S, Suppan P (2013) Mitigation of urban heat stress - a modelling case study for the area of Stuttgart. Die Erde - Journal of the Geographical Society of Berlin 144(3–4):202–216

    Google Scholar 

  • Fang C (2008) Evaluating the thermal reduction effect of plant layers on rooftops. Energy and Buildings 40(6):1048–1052. doi:10.1016/j.enbuild.2007.06.007

    Article  Google Scholar 

  • Fortuniak K, Klysik K, Wibig J (2006) Urban–rural contrasts of meteorological parameters in Lodz. Theor Appl Climatol 84:91–101

    Article  Google Scholar 

  • Gartland L (2011) Heat islands: understanding and mitigating heat in urban areas. Routledge, London

    Google Scholar 

  • Gedge D, Kadas G (2005) Green roofs and biodiversity. Biologist 52(3):161–169

    Google Scholar 

  • Gill S, Rahman M, Handley J, Ennos A (2013) Modelling water stress to urban amenity grass in Manchester UK under climate change and its potential impacts in reducing urban cooling. Urban For Urban Green 12(3):350–358. doi:10.1016/j.ufug.2013.03.005

    Article  Google Scholar 

  • Gill SE (2006) Climate change and urban greenspace. PhD Thesis, University of Manchester

  • Gill SE, Handley JF, Ennos AR, Pauleit S (2007) Adapting cities for climate change: the role of the green infrastructure. Built Environ 22(1):115–133

    Article  Google Scholar 

  • Gill SE, Handley JF, Ennos AR, Pauleit S, Theuray N, Lindley SJ (2008) Characterising the urban environment of UK cities and towns: a template for landscape planning. Landsc Urban Plan 87(3):210–222. doi:10.1016/j.landurbplan.2008.06.008

    Article  Google Scholar 

  • Grenzdörffer G, Kressner L (2010) Aktualisierung der flächennutzungskartierung der hansestadt Rostock. Steinbeis Transferzentrum Geoinformatik Rostock, Universität Rostock, Professur für Geodäsie und Geoinformatik

    Google Scholar 

  • Grenzdörffer G (2010) Erzeugung von digitalen thermalkarten auf der basis von satellitendaten. Steinbeis Transferzentrum Geoinformatik Rostock, Universität Rostock, Professur für Geodäsie und Geoinformatik

    Google Scholar 

  • Hagemeier-Klose M, Albers M, Richter M, Deppisch S (2013) Szenario-planung als instrument einer „klimawandelangepassten“stadt- und regionalplanung – bausteine der zukünftigen flächenentwicklung und szenarienkonstruktion im stadt-umland-raum Rostock. Raumforsch Raumordn 71(5):413–426. doi:10.1007/s13147-013-0250-y

    Article  Google Scholar 

  • Hajad S, Kosatky T (2009) Heat-related mortality: a review and exploration of heterogeneity. Jou Epidemi Comm Health 64:753–760

    Article  Google Scholar 

  • Hall J (2009) Integrated assessment to support regional and local decision making. In: Davoudi S, Crawford J, Mehmood A (eds) Planning for climate change: strategies for mitigation and adaptation for spatial planners///Planning for climate change. Strategies for mitigation and adaptation for spatial planners. Earthscan, London/Sterling VA///London, pp 236–249

  • Hall JM, Handley JF, Ennos AR (2012) The potential of tree planting to climate-proof high density residential areas in Manchester, UK. Landsc Urban Plan 104(3–4):410–417. doi:10.1016/j.landurbplan.2011.11.015

    Article  Google Scholar 

  • Hallegatte S (2009) Strategies to adapt to an uncertain climate change. Glob Environ Chang 19(2):240–247. doi:10.1016/j.gloenvcha.2008.12.003

    Article  Google Scholar 

  • Helmholtz Zentrum Geesthacht (2011) Norddeutscher Klimaatlas [http://www.norddeutscher-klimaatlas.de/]

  • Hollweg HD, Böhm U, Fast I, Hennemuth B, Keuler K, Keup-Thiel E, Lautenschlager M, Legutke S, Radtke K, Rockel B, Schubert M, Will A, Woldt M, Wunram C (2008) Ensemble simulations over Europe with the regional climate model CLM forced with IPCC AR4 global scenarios. M & D Technical Report, Hamburg

    Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC) (2007) Climate change 2007: synthesis report: Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, Geneva

  • IPCC (2012) Managing the risks of extreme events and disasters to advance climate change adaptation: a special report of working groups I and II of the intergovernmental panel on climate change, Cambridge, UK, and New York, USA

  • Jacob D (2001) A note to the simulation of the annual and inter-annual variability of the water budget over the Baltic sea drainage basin. Meteorog Atmos Phys 77:61–73

    Article  Google Scholar 

  • Jacob D, Mahrenholz P (2006) REMO A1B scenario run, UBA project, datastream 3. World Data Center for Climate

  • Kumar S, Prasad T, Sashidharan N, Nair SK (2001) Heat island intensities over brihan Mumbai On a cold winter and hot summer night. Mausam 52:703–708

    Google Scholar 

  • Lautenschlager M, Keuler K, Wunram C, Keup-Thiel E, Schubert M, Will A, Rockel B, Boehm U (2009) Climate Simulation with CLM, Scenario B1 run no.1, Data Stream 3: European region MPI-M/MaD. World Data Center for Climate

  • Li X, Zhou W, Ouyang Z (2013) Relationship between land surface temperature and spatial pattern of greenspace: what are the effects of spatial resolution? Landsc Urban Plan 114:1–8. doi:10.1016/j.landurbplan.2013.02.005

    Article  Google Scholar 

  • LUC (1993) Trees in Towns: Report to the Department of the Environment. HMSO, London

  • Magee N, Curtis J, Wendler G (1999) The urban heat island effect at Fairbanks, Alaska. Theor Appl Climatol 64(1–2):39–47. doi:10.1007/s007040050109

    Article  Google Scholar 

  • Mann ME, Schmidt GA (2003) Ground vs. surface air temperature trends: implications for borehole surface temperature reconstructions. Geophys Res Lett 30(12):1607. doi:10.1029/2003GL017170

    Article  Google Scholar 

  • Marzluff JM, Endlicher W, Alberti M, Bradley G, Ryan C, Zumbrunnen C, Simon U (eds) (2008) Urban ecology. An international perspective on the interactions between humans and nature, 1st edn. New York, Springer

    Google Scholar 

  • Matzarakis A, Mayer H, Iziomon MG (1999) Applications of a universal thermal index: physiological equivalent temperature. Int J Biometeorol 43(2):76–84

    Article  CAS  PubMed  Google Scholar 

  • McCarthy MP, Harpham C, Goodess CM, Jones PD (2012) Simulating climate change in UK cities using a regional climate model, HadRM3. Int J Climatol 32(12):1875–1888. doi:10.1002/joc.2402

    Article  Google Scholar 

  • McGranahan G, Balk D, Anderson B (2007) The rising tide: assessing the risks of climate change and human settlements in low elevation coastal zones. Environ Urban 19(1):17–37

    Article  Google Scholar 

  • Mentens J, Raes D, Hermy M (2006) Green roofs as a tool for solving the rainwater runoff problem in the urbanized 21st century? Landsc Urban Plan 77(3):217–226. doi:10.1016/j.landurbplan.2005.02.010

    Article  Google Scholar 

  • Michelozzi P, Accetta G, Sario M de, D’Ippoliti D, Marino C, Baccini M, Biggeri A, Anderson HR, Katsouyanni K, Ballester F, Bisanti L, Cadum E, Forsberg B, Forastiere F, Goodman PG, Hojs A, Kirchmayer U, Medina S, Paldy A, Schindler C, Sunyer J, Perucci CA (2009) High temperature and hospitalizations for cardiovascular and respiratory causes in 12 European cities. Am J Respir Crit Care Med 179(5):383–389. doi:10.1164/rccm.200802-217OC

  • Müller N, Kuttler W, Barlag A (2014) Counteracting urban climate change: adaptation measures and their effect on thermal comfort. Theor Appl Climatol 115(1–2):243–257. doi:10.1007/s00704-013-0890-4

    Article  Google Scholar 

  • Nafstad P, Skrondal A, Bjertness E (2001) Mortality and temperature in Oslo, Norway, 1990–1995. Eur J Epidemiol 17:621–627

    Article  CAS  PubMed  Google Scholar 

  • Neil K, Wu J (2006) Effects of urbanization on plant flowering phenology: a review. Urban Ecosyst 9:243–257

    Article  Google Scholar 

  • Nicholls RJ, Wong PP, Burkett VR, Codignotto JO, Hay JE, McLean RF, Ragoonaden S, Woodroffe CD (2007) Coastal systems and low-lying areas. Climate change 2007: impacts, adaptation and vulnerability: contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) Climate change 2007 - impacts, adaptation and vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge Univ. Press, Cambridge, pp. 315–356

    Google Scholar 

  • Oberndorfer E, Lundholm J, Bass B, Coffman RR, Doshi H, Dunnett N, Gaffin S, Köhler M, Liu KKY, Rowe B (2007) Green roofs as urban ecosystems: ecological structures, functions, and services. Bioscience 57(10):823–833

    Article  Google Scholar 

  • Oke TR (1973) City size and the urban heat island. Atmos Environ 7(8):769–779

    Article  Google Scholar 

  • Oke TR (1982) The energetic basis of the urban heat island. Q J R Meteorol Soc 108(455):1–24

    Google Scholar 

  • Oudin Åström D, Forsberg B, Ebi KL, Rocklöv J (2013) Attributing mortality from extreme temperatures to climate change in Stockholm, Sweden. Nat Clim Ch 3(12):1050–1054. doi:10.1038/NCLIMATE2022

    Article  Google Scholar 

  • Pauleit S, Duhme F (2000) GIS assessment of Munich’s urban forest structure for urban planning. J Arboric 26(3):133–141

    Google Scholar 

  • Pauleit S, Ennos R, Golding Y (2005) Modeling the environmental impacts of urban land use and land cover change—a study in Merseyside, UK. Landsc Urban Plan 71:295–310

    Article  Google Scholar 

  • Piotrowicz K (2009) The occurrence of unfavorable thermal conditions on human health in Central Europe and potential climate change impacts: an example from Cracow, Poland. Environ Manag 44(4):766–775. doi:10.1007/s00267-009-9357-x

    Article  Google Scholar 

  • Richter M, Albers M, Deppisch S (2012) Decisions in time of climate change: The CLUC-model as a tool for spatial planning. In: Proceedings of the AESOP 26th Annual Congress, METU Ankara

  • Richter M, Deppisch S, von Storch H (2013) Observed changes in long-term climatic conditions and inner-regional differences in urban regions of the Baltic sea coast. Atmos Climat Sc 03(02):165–176. doi:10.4236/acs.2013.32018

    Article  Google Scholar 

  • Ripley E, Archibold O, Bretell D (1996) Temporal and spatial temperature patterns in Saskatoon. Weather 51(12):398–403

    Article  Google Scholar 

  • Rocklöv J, Forsberg B, Meister K (2009) Winter mortality modifies the heat-mortality association the following summer. Eur Respir J 33:245–251

    Article  PubMed  Google Scholar 

  • Roeckner E, Bäuml G, Bonaventura L, Brokopf R, Esch M, Giorgetta M, Hagemann S, Kirchner I, Kornblueh L, Manzini E, Rhodin A, Schlese U, Schulzweida U, Tompkins A (2003) The atmospheric general circulation model ECHAM 5. PART I: Model Description MPI-Report 349

  • Santamouris M (2014) Cooling the cities - a review of reflective and green roof mitigation technologies to fight heat island and improve comfort in urban environments. Sol Energy 103:682–703

    Article  Google Scholar 

  • Scherber K, Langner M, Endlicher W (2013) Spatial analysis of hospital admissions for respiratory diseases during summer spatial analysis of hospital admissions for respiratory diseases during summer months in berlin taking bioclimatic and socio-economic aspects into account. Die Erde - Journal of the Geographical Society of Berlin 144(3–4)

  • Scherer D, Fehrenbach U, Lakes T, Lauf S, Meier F, Schuster C (2013) Quantification of heat-stress related mortality hazard, vulnerability and risk in berlin, Germany. Die Erde - Journal of the Geographical Society of Berlin 144(3–4):238–259

    Google Scholar 

  • Solecki W, Marcotullio PJ (2013) Climate change and urban biodiversity vulnerability. In: Elmquist T, Fragikas M, Goodness J, Güneralp B, Marcotullio PJ, McDonald RI, Parnell S, Schewenius M, Senstad M, Seto KC, Wilkinson C: Urbanisation, biodiversity and ecosystem services: Challenges and opportunities – A global assessment. Springer Dordrecht Heidelberg New York London: 485–504

  • Steinecke K (1999) Urban climatological studies in the Reykjavı́k subarctic environment, Iceland. Atmos Environ 33(24–25):4157–4162. doi:10.1016/S1352-2310(99)00158-2

    Article  CAS  Google Scholar 

  • Steppeler J, Doms G, Schättler U, Bitzer, H. W., Gassmann A, Damrath U, Gregoric G (2003) Meso-gamma scale forecasts using the nonhydrostatic model LM. Meteorog Atmos Phys 82(1–4):75–96. doi:10.1007/s00703-001-0592-9

  • Svensson MK (2002) Urban climate in relation to land use, planning and comfort. Göteborg University, Doctoral Thesis

    Google Scholar 

  • Svensson MK, Thorsson S, Lindqvist S (2003) A geographical information system model for creating bioclimatic maps. Examples from a high, mid-latitude city. Int J Biometeorol 47(2):102–112

    PubMed  Google Scholar 

  • Szymanowski M, Kryza M (2009) GIS-based techniques for urban heat island spatialization. Clim Res 38:171–187. doi:10.3354/cr00780

    Article  Google Scholar 

  • Takebayashi H, Moriyama M (2007) Surface heat budget on green roof and high reflection roof for mitigation of urban heat island. Build Environ 42(8):2971–2979. doi:10.1016/j.buildenv.2006.06.017

    Article  Google Scholar 

  • Thorsson S, Lindberg F, Björklund J, Holmer B, Rayner D (2011) Potential changes in outdoor thermal comfort conditions in Gothenburg, Sweden due to climate change: the influence of urban geometry. Int J Climatol 31:324–335

    Article  Google Scholar 

  • Tso CP, Chan BK, Hashim MA (1991) Analytical solutions to the near-neutral atmospheric surface energy balance with and without heat storage for urban climatological studies. J Appl Meteorol 30(4):413–424

    Article  Google Scholar 

  • Unwin DJ (1980) The synoptic climatology of birminghams’s urban heat island, 1965–1974. Weather 35(2):43–50. doi:10.1002/j.1477-8696.1980.tb03484.x

    Article  Google Scholar 

  • van Renterghem T, Botteldooren D (2009) Reducing the acoustical façade load from road traffic with green roofs. Build Environ 44(5):1081–1087. doi:10.1016/j.buildenv.2008.07.013

    Article  Google Scholar 

  • VanWoert ND, Rowe DB, Andresen JA, Rugh CL, Fernandez RT, Xiao L (2005) Green roof stormwater retention. J Environ Qual 34(3):1036. doi:10.2134/jeq2004.0364

    Article  CAS  PubMed  Google Scholar 

  • Whitford V, Ennos AR, Handley J (2001) "City form and natural process" - indicators for the ecological performance of urban areas and their application to Merseyside, UK. Landsc Urban Plan 57:91–103

    Article  Google Scholar 

  • Wienert U (2002) Untersuchungen zur breiten- und klimazonenabhängigkeit der urbanen wärmeinsel – eine statistische analyse. Essener Ökologische Schriften, vol 16

  • Wienert U, Kreienkamp F, Spekat A, Enke W (2013) A simple method to estimate the urban heat island intensity in data sets used for the simulation of the thermal behaviour of buildings. Meteorol Z 22(2):179–185. doi:10.1127/0941-2948/2013/0397

    Article  Google Scholar 

  • Wilby RL (2008) Constructing climate change scenarios of urban heat island intensity and air quality. Env Plan B: Plan Des 35:902–919

    Article  Google Scholar 

  • Yan W, Mikami T (2002) Relationship between surface temperature from Landsat TM thermal images and air temperature observed on the ground. J Geogr 111(5):695–710. doi:10.5026/jgeography.111.5_695

    Article  Google Scholar 

  • Yang J, Yu Q, Gong P (2008) Quantifying air pollution removal by green roofs in Chicago. Atm Env 42(31):7266–7273. doi:10.1016/j.atmosenv.2008.07.003

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author would like to thank the research group plan B:altic for ongoing discussions. The research was funded by the HafenCity University Hamburg and the German Federal Ministry of Research and Education through the Social–Ecological Research Programme (FKZ 01UU0909).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Richter.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest in the subject matter discussed in the manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Richter, M. Urban climate change-related effects on extreme heat events in Rostock, Germany. Urban Ecosyst 19, 849–866 (2016). https://doi.org/10.1007/s11252-015-0508-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11252-015-0508-y

Keywords

Navigation