Avian haemosporidian parasites in an urban forest and their relationship to bird size and abundance

Abstract

Urbanization has been identified as a threat to biodiversity due to landscape modifications. Studies of parasite ecology in urbanized areas lagged behind those made on macro organisms. Here we studied infection prevalence of haemosporidian parasites in an avian community of an urban forest from Germany, and its relationship with bird abundance and body mass. We used PCR to amplify a fragment of the mtDNA cyt b gene to determine the infection status of birds, and bird point counts to determine bird relative abundances. The avifauna was dominated by two small sized insectivore passerines (Parus major, Cyanistes caeruleus), representing ~40 % of the total bird records. The highest haemosporidian prevalence was recorded for Turdus philomelos (100 %) and for Fringilla coelebs (75 %). Bird abundance and body mass were positively associated with infection status for two haemosporidian genera: Plasmodium and Leucocytozoon. Infection rate was lower in juveniles compared to adult birds. We recorded a total of 7 Plasmodium, 26 Haemoproteus, and 10 Leucocytozoon lineages. Avian malaria (P. relictum) was detected infecting 5 individuals of P. major, the most abundant species in the community. These results, together with those of previous studies at the same site, suggest that potentially any of the genetic haemosporidian lineages detected in this urban forest can be transmitted across native and pet bird species, and to species of conservation concern housed at aviaries.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Alberti M (2008) Advances in urban ecology: integrating humans and ecological processes in urban ecosystems. Springer, New York

    Google Scholar 

  2. Allan SA, Bernier UR, Kline DL (2006) Laboratory evaluation of avian odors for mosquito (Diptera: Culicidae) attraction. J Med Entomol 43:225–231

    CAS  Article  PubMed  Google Scholar 

  3. Atkinson CT, Dusek RJ, Woods KL, Iko WM (2000) Pathogenicity of avian malaria in experimentally infected Hawaii Amakihi. J Wildl Dis 36:197–204

    CAS  Article  PubMed  Google Scholar 

  4. Atkinson CT, Thomas NJ, Hunter DB (2008) Parasitic diseases of wild birds. Wiley-Blackwell, Wiley, Iowa

    Google Scholar 

  5. Beaudoin L (1971) A model for the ecology of avian malaria. J Wildl Dis 7:5–3

    CAS  Article  PubMed  Google Scholar 

  6. Belo NO, Pinheiro RT, Reis ES, Ricklefs RE, Braga EM (2011) Prevalence and lineage diversity of avian haemosporidians from three distinct cerrado habitats in Brazil. PLoS ONE 6(3), e17654. doi:10.1371/journal.pone.0017654

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. Bennett GF, Bishop MA, Peirce MA (1993) Checklist of the avian species of Plasmodium Marchiafava and Celli, 1885 (Apicomplexa) and their distribution by avian family and Wallacean life zones. Syst Parasitol 26:171–179

    Article  Google Scholar 

  8. Bennett GF, Peirce MA, Earlé RA (1994) An annotated checklist of the valid avian species of Haemoproteus, Leucocytozoon (Apicomplexa, Haemosporida) and Hepatozoon (Apicomplexa, Haemogregarinidae). Syst Parasitol 29:61–73

    Article  Google Scholar 

  9. Bensch S, Stjernman M, Hasselquist D, Örjan Ö, Hannson B, Westerdahl H, Pinheiro RT (2000) Host specificity in avian blood parasites: a study of Plasmodium and Haemoproteus mitocondrial DNA amplified from birds. Proc R Soc Lond B 267:1583–1589

    CAS  Article  Google Scholar 

  10. Bensch S, Hellgren O, Pérez-Tris J (2009) A public database of malaria parasites and related haemosporidians in avian hosts based on mitochondrial cytochrome b lineages. Mol Ecol Resour 9:1353–1358

    Article  PubMed  Google Scholar 

  11. Bentz S, Rigaud T, Barroca M, Martin-Laurent F, Bru D, Moreau J, Faivre B (2006) Sensitive measure of prevalence and parasitaemia of haemosporidia from European blackbird (Turdus merula) populations: value of PCR-RFLP and quantitative PCR. Parasitology 133:685–692

    CAS  Article  PubMed  Google Scholar 

  12. Berkowitz AR, Nilon CH, Hollweg KS (2003) Understanding urban ecosystems: a new frontier for science and education. Springer, New York

    Google Scholar 

  13. Bradley CA, Altizer S (2007) Urbanization and the ecology of wildlife diseases. Trends Ecol Evol 22:95–102

    Article  PubMed  Google Scholar 

  14. Carlson JS, Martínez-Gómez JE, Cornel A, Loiseau C, Sehgal RNM (2011) Implications of Plasmodium parasite infected mosquitoes on an insular avifauna: the case of Socorro Island, México. J Vector Ecol 36:213–220

    Article  PubMed  Google Scholar 

  15. Chao A, Chiu CH (2013) Estimation of species richness and shared species richness. In: Balakrishnan N (ed) Methods and applications of statistics in the atmospheric and Earth sciences. Wiley, New York, pp 76–111

    Google Scholar 

  16. Chiesura A (2004) The role of urban parks for the sustainable city. Landsc Urban Plan 68:129–138

    Article  Google Scholar 

  17. Cosgrove CL, Wood MJ, Day KP, Sheldon BC (2008) Seasonal variation in Plasmodium prevalence in a population of blue tits Cyanistes caeruleus. J Anim Ecol 77:540–548

    Article  PubMed  Google Scholar 

  18. Czech B, Krausman PR, Devers PK (2000) Economic associations among causes of species endangerment in the United States. Bioscience 50:593–601

    Article  Google Scholar 

  19. Delgado-V CA, French K (2012) Parasite-bird interactions in urban areas: current evidence and emerging questions. Landsc Urban Plan 105:5–14

    Article  Google Scholar 

  20. Evans KL, Gaston KJ, Sharp SP, McGowan A, Simeoni M, Hatchwell BJ (2009) Effects of urbanisation on disease prevalence and age structure in blackbird Turdus merula populations. Oikos 118:774–782

    Article  Google Scholar 

  21. Fokidis HB, Greiner EC, Deviche P (2008) Interspecific variation in avian blood parasites and haematology associated with urbanization in a desert habitat. J Avian Biol 39:300–310

    Article  Google Scholar 

  22. Geue D, Partecke J (2008) Reduced parasite infestation in urban Eurasian blackbirds (Turdus merula): a factor favouring urbanization? Can J Zool 86:1419–1425

    Article  Google Scholar 

  23. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  24. Hatcher MJ, Dunn AM (2011) Parasites in ecological communities: from interactions to ecosystems. Cambridge Univ. Press, Cambridge

    Google Scholar 

  25. Hatchwell BJ, Wood MJ, Anwar M, Perrins CM (2000) The prevalence and ecology of the haematozoan parasites of European blackbirds, Turdus merula. Can J Zool 78:684–687

    Article  Google Scholar 

  26. (HBW) Handbook of the Birds of the World (2013) Handbook of the birds of the world alive. Lynx Editions. http://www.hbw.com/. Last accessed: December 20, 2013

  27. Hellgren O, Waldenström J, Bensch S (2004) A new PCR assay for simultaneous studies of Leucocytozoon, Plasmodium, and Haemoproteus from avian blood. J Parasitol 90:797–802

    CAS  Article  PubMed  Google Scholar 

  28. Hellgren O, Pérez-Tris J, Bensch S (2009) A jack-of-all-trades and still a master of some: prevalence and host range in avian malaria and related blood parasites. Ecology 90:2840–2849

    Article  PubMed  Google Scholar 

  29. Hudson PJ, Dobson AP, Lafferty KD (2006) Is a healthy ecosystem one that is rich in parasites? Trends Ecol Evol 21:381–385

    Article  PubMed  Google Scholar 

  30. Hutto RL, Pletschet SM, Hendricks P (1986) A fixed-radius point count method for non-breeding and breeding season use. Auk 103:593–602

    Google Scholar 

  31. Jansen CC, Webb CE, Graham GC, Craig SB, Zborowski P, Ritchie SA, Russell RC, van den Hurk AF (2009) Blood sources of mosquitoes collected from urban and peri-urban environments in Eastern Australia with species-specific molecular analysis of avian blood meals. Am J Trop Med Hyg 81:849–857

    Article  PubMed  Google Scholar 

  32. Johnson EP, Underhill GW, Cox JA, Threlkeld WL (1938) A blood protozoon of turkeys transmitted by Simulium nigroparvum (Twinn). Am J Hyg 27:649–665

    Google Scholar 

  33. Keeling MJ, Rohani P (2008) Modeling infectious diseases in humans and animals. Princeton Univ. Press, Princeton

    Google Scholar 

  34. Keesing F, Ostfeld RS (2012) An ecosystem service of biodiversity: the protection of human health against infectious disease. In: Aguirre AA, Ostfeld RS, Daszak P (eds) New directions in conservation medicine: applied cases of ecological health. Oxford University Press, New York, pp 56–66

    Google Scholar 

  35. Kilpatrick AM, Kramer LD, Jones MJ, Marra PP, Daszak P (2006) West Nile virus epidemics in North America are driven by shifts in mosquito feeding behavior. PLoS Biol 4, e82. doi:10.1371/journal.pbio.0040082

    Article  PubMed  PubMed Central  Google Scholar 

  36. Kissam JB, Noblet R, Garris GI (1975) Large-scale aerial treatment o an endemic area with Abate granular larvicide to control black flies (Diptera Simuliidae) and suppress Leucocytozoon smithi of turkeys. J Med Entomol 12:359–362

    CAS  Article  PubMed  Google Scholar 

  37. Klowden MJ, Zweibel LJ (2005) Vector olfaction and behavior. In: Marquardt WC (ed) Biology of disease vectors, 2nd edn. Elsevier Academic Press, San Diego, pp 277–287

    Google Scholar 

  38. Knowles SCL, Wood MJ, Alves R, Wilkin TA, Bensch S, Sheldon BC (2011) Molecular epidemiology of malaria prevalence and parasitaemia in a wild bird population. Mol Ecol 20:1062–1076

    Article  PubMed  Google Scholar 

  39. Knowles SCL, Wood MJ, Alves R, Sheldon BC (2014) Dispersal in a patchy landscape reveals contrasting determinants of infection in a wild avian malaria system. J Animal Ecol 83:429–439

    Article  Google Scholar 

  40. Križanauskienė A, Pérez-Tris J, Palinauskas V, Hellgren O, Bensch S, Valkiūnas G (2010) Molecular phylogenetic and morphological analysis of haemosporidian parasites (Haemosporida) in a naturally infected European songbird, the Blackcap Sylvia atricapilla, with description of Haemoproteus pallidulus sp. nov. Parasitology 137:217–227

    Article  PubMed  Google Scholar 

  41. Lafferty KD, Dobson AP, Kuris AM (2006) Parasites dominate food web links. Proc Natl Acad Sci U S A 103:11211–11216

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  42. Lafferty KD, Allesina S, Arim M, Briggs CJ, De Leo G, Dobson AP, Dunne JA, Johnson PTJ, Kuris AM, Marcogliese DJ, Martinez ND, Memmott J, Marquet PA, McLaughlin JP, Mordecai EA, Pascual M, Poulin R, Thieltges DW (2008) Parasites in food webs: the ultimate missing links. Ecol Lett 11:533–546

    Article  PubMed  PubMed Central  Google Scholar 

  43. LeGros A, Stracey CM, Robinson SK (2011) Associations between northern mockingbirds and the parasite Philornis porteri in relation to urbanization. Wilson J Ornithol 123:788–796

    Article  Google Scholar 

  44. Levin I, Outlaw DC, Vargas FH, Parker PG (2009) Plasmodium blood parasite found in endangered Galapagos penguins (Spheniscus mendiculus). Biol Conserv 142:3191–3195

    Article  Google Scholar 

  45. Lüdtke B, Moser I, Santiago-Alarcon D, Fischer M, Kalko EKV, Schaefer HM, Suarez-Rubio M, Tschapka M, Renner SC (2013) Associations of forest type, parasitism and body condition of two European Passerines, Fringilla coelebs and Sylvia atricapilla. PLoS ONE 8(12), e81395. doi:10.1371/journal.pone.0081395

    Article  PubMed  PubMed Central  Google Scholar 

  46. Magurran AE (2004) Measuring biological diversity. Blackwell, Oxford

    Google Scholar 

  47. Martin LB, Boruta M (2014) The impact of urbanization on avian disease transmission and emergence. In: Gil D, Brumm H (eds) Avian Urban Ecology: behavioural and physiological adaptations. Oxfor Univ. Press, Oxford, pp 116–128

    Google Scholar 

  48. Martínez- de la Puente J, Merino S, Tomás G, Moreno J, Morales J, Lobato E, García-Fraile S, Belda EJ (2010) The blood parasite Haemoproteus reduces survival in a wild bird: a medication experiment. Biol Lett 6:663–665

    Article  Google Scholar 

  49. Marzal A, de Lope F, Navarro C, Møller AP (2005) Malaria parasites decrease reproductive success: an experimental study in a passerine bird. Oecologia 142:541–545

    Article  PubMed  Google Scholar 

  50. McKinney ML (2002) Urbanization, biodiversity and conservation. Bioscience 52:883–890

    Article  Google Scholar 

  51. Medeiros MCI, Hamer GL, Ricklefs RE (2013) Host compatibility rather than vector-host-encounter rate determines the host range of avian Plasmodium parasites. Proc R Soc Lond B 280:20122947

    Article  Google Scholar 

  52. Merino S, Moreno J, Sanz JJ, Arriero E (2000) Are avian blood parasites pathogenic in the wild? A medication experiment in blue tits (Parus caeruleus). Proc R Soc Lond B 267:2507–2510

    CAS  Article  Google Scholar 

  53. Møller AP, Nielsen JT (2007) Malaria and risk of predation: a comparative study of birds. Ecology 88:871–881

    Article  PubMed  Google Scholar 

  54. Murata K, Nii R, Sasaki E, Ishikawa S, Sato Y, Sawabe K, Tsuda Y, Matsumoto R, Suda A, Ueda M (2008) Plasmodium (Bennettinia) juxtanucleare infection in a captive white eared-pheasant (Crossoptilon crossoptilon) at a Japanese Zoo. J Vet Med Sci 70:203–205

    Article  PubMed  Google Scholar 

  55. Pacheco MA, Escalante AA, Garner MM, Bradley GA, Aguilar RF (2011) Haemosporidian infection in captive masked bobwhite quail (Colinus virginianus ridgwayi), an endangered subspecies of the northern bobwhite quail. Vet Parasitol 182:113–120

    Article  PubMed  PubMed Central  Google Scholar 

  56. Palinauskas V, Valkiūnas G, Bolshakov CV, Bensch S (2008) Plasmodium relictum (lineage P-SGS1): effects on experimentally infected passerine birds. Exp Parasitol 120:372–380

    Article  PubMed  Google Scholar 

  57. Palinauskas V, Valkiūnas G, Križanauskienė A, Bensch S, Bolshakov CV (2009) Plasmodium relictum (lineage P-SGS1): further observation of effects on experimentally infected passeriform birds, with remarks on treatment with Malarone™. Exp Parasitol 123:134–139

    CAS  Article  PubMed  Google Scholar 

  58. Palinauskas V, Valkiūnas G, Bolshakov CV, Bensch S (2011) Plasmodium relictum (lineage SGS1) and Plasmodium ashfordi (lineage GRW2): the effects of the coinfection on experimentally infected passerine birds. Exp Parasitol 127:527–533

    Article  PubMed  Google Scholar 

  59. Palinauskas V, Iezhova TA, Križanauskienė A, Markovets MY, Bensch S, Valkiūnas (2013) Molecular characterization and distribution of Haemoproteus minutus (Haemosporida, Haemoproteidae): a pathogenic avian parasite. Parasitol Int 62:358–363

    CAS  Article  PubMed  Google Scholar 

  60. Paperna I, Martelli P (2008) Haemosporidian infections in captive exotic glossy starling Lasmprotornis chalybaeus in Hong Kong. Folia Parasitol 55:7–12

    Article  PubMed  Google Scholar 

  61. Pérez-Tris J, Bensch S (2005a) Diagnosing genetically diverse avian malarial infections using mixed sequence analysis and TA-cloning. Parasitology 131:15–23

    Article  PubMed  Google Scholar 

  62. Pérez-Tris J, Bensch S (2005b) Dispersal increases local transmission of avian malaria parasites. Ecol Lett 8:838–845

    Article  Google Scholar 

  63. Pérez-Tris J, Hellgren O, Križanauskienė A, Waldenström J, Secondi J, Bonneaud C, Fjeldså J, Hasselquist D, Bensch S (2007) Within-host speciation of malaria parasites. PLoS ONE 2, e235. doi:10.1371/journal.pone.0000235

    Article  PubMed  PubMed Central  Google Scholar 

  64. Randolph SE, Dobson ADM (2012) Pangloss revisited: a critique of the dilution effect and the biodiversity buffers-disease paradigm. Parasitology 139:847–863

    CAS  Article  PubMed  Google Scholar 

  65. Reiczigel J (2003) Confidence intervals for the binomial parameter: some new considerations. Stat Med 22:611–621

    Article  PubMed  Google Scholar 

  66. Richards SL, Ponnusamy L, Unnasch TR, Hassan HK, Apperson CS (2006) Host-feeding patterns of Aedes albopictus (Diptera: Culicidae) in relation to availability of human and domestic animals in suburban landscapes of Central North Carolina. J Med Entomol 43:543–551

    Article  PubMed  PubMed Central  Google Scholar 

  67. Ricklefs RE, Fallon SM, Bermingham E (2004) Evolutionary relationships, cospeciation, and host switching in avian malaria parasites. Syst Biol 53:111–119

    Article  PubMed  Google Scholar 

  68. Rózsa L, Reiczigel J, Majoros G (2000) Quantifying parasites in samples of hosts. J Parasitol 86:228–232

    Article  PubMed  Google Scholar 

  69. Santiago-Alarcon D, Bloch R, Rolshausen G, Schaefer HM, Segelbacher G (2011) Prevalence, diversity, and interaction patterns of avian haemosporidians in a four-year study of blackcaps in a migratory divide. Parasitology 138:824–835

    CAS  Article  PubMed  Google Scholar 

  70. Santiago-Alarcon D, Havelka P, Schaefer HM, Segelbacher G (2012a) Blood meal analysis reveals avian Plasmodium infections and broad host preferences of Culicoides (Diptera: Ceratopogonidae) vectors. PLoS ONE 7, e31098. doi:10.1371/journal.pone.0031098

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  71. Santiago-Alarcon D, Palinauskas V, Schaefer HM (2012b) Diptera vectors of avian haemosporidian parasites: untangling parasite life cycles and their taxonomy. Biol Rev 87:928–964

    Article  PubMed  Google Scholar 

  72. Santiago-Alarcon D, Havelka P, Pineda E, Schaefer HM, Segelbacher G (2013a) Urban forests as hubs for novel zoonosis: blood meal analysis, seasonal variation in Culicoides (Diptera: Ceratopogonidae) vectors, and avian haemosporidians. Parasitology 140:1799–1810

    Article  PubMed  Google Scholar 

  73. Santiago-Alarcon D, Mettler R, Segelbacher G, Schaefer HM (2013b) Haemosporidian parasitism in the blackcap (Sylvia atricapilla) in relation to spring arrival and body condition. J Avian Biol 44:521–530

    Article  Google Scholar 

  74. Santiago-Alarcon D, Rodríguez-Ferraro A, Parker PG, Ricklefs RE (2014) Different meal, same flavor: cospeciation and host switching of haemosporidian parasites in some non-passerine birds. Parasites & Vectors 7: 286; http://www.parasitesandvectors.com/content/7/1/286

  75. Scheuerlein A, Ricklefs RE (2004) Prevalence of blood parasites in European passeriform birds. Proc R Soc Lond B 271:1363–1370

    Article  Google Scholar 

  76. Shochat E (2004) Credit or debit? Resource input changes population dynamics of city-slicker birds. Oikos 106:622–626

    Article  Google Scholar 

  77. Shochat E, Lerman SB, Anderies JM, Warren PS, Faeth SH, Nilon CH (2010) Invasion, competition, and biodiversity loss in urban ecosystems. Bioscience 60:199–208

    Article  Google Scholar 

  78. Svensson-Coelho M, Ellis VA, Loiselle BA, Blake JG, Ricklefs RE (2014) Reciprocal specialization in multihost malaria parasite communities of birds: a temperate-tropical comparison. Am Nat 184:624–635

    Article  PubMed  Google Scholar 

  79. Szöllősi E, Cichoń M, Eens M, Hasselquist D, Kempenaers B, Merino S, Nilsson J-Å, Rosivall B, Rytkönen S, Török J, Wood MJ, Garamszegi LZ (2011) Determinants of distribution and prevalence of avian malaria in blue tit populations across Europe: separating host and parasite effects. J Evol Biol 24:2014–2024

    Article  PubMed  Google Scholar 

  80. Tempelis CH, Washino RK (1967) Host-feeding patterns of Culex tarsalis in the Sacramento Valley, California with notes on other species. J Med Entomol 4:315–318

    CAS  Article  PubMed  Google Scholar 

  81. Thomas NJ, Hunter DB, Atkinson CT (2007) Infectious diseases of wild birds. Blackwell Publishing, Iowa

    Google Scholar 

  82. Tzoulas K, Korpela K, Venn S, Yli-Pelkonen V, Kaźmierczak A, Niemela J, James P (2007) Promoting ecosystem and human health in urban areas using green infrastructure: a literature review. Landsc Urban Plan 81:167–178

    Article  Google Scholar 

  83. Valkiūnas G (2005) Avian malaria parasites and other haemosporidia. CRC Press, Boca Raton

    Google Scholar 

  84. Weinandt ML, Meyer M, Strand M, Lindsay AR (2012) Cues used by the black fly, Simulium annulus, for attraction to the common loon (Gavia immer). J Vector Ecol 37:359–364

    Article  PubMed  Google Scholar 

  85. Whiteman NK, Parker PG (2005) Using parasites to infer host population history: a new rationale for parasite conservation. Anim Conserv 8:175–181

    Article  Google Scholar 

  86. Wood JM, Cosgrove CL, Wilkin TA, Knowles SCL, Day KP, Sheldon BC (2007) Within population variation in prevalence and lineage distribution of avian malaria in bluetits, Cyanistes caeruleus. Mol Ecol 16:3263–3273

    CAS  Article  PubMed  Google Scholar 

  87. Yorinks N, Atkinson CT (2000) Effects of malaria on activity budgets of experimentally infected juvenile Apapane (Himatione sanguinea). Auk 117:731–773

    Article  Google Scholar 

Download references

Acknowledgments

We thank Marie Melchior, Rebecca Bloch, Claudia Hermes, and Gregor Rolshausen for assistance during fieldwork. D.S.-A. was funded by the Alexander von Humboldt Foundation (post-doctoral grant) and by Consejo Nacional de Ciencia y Tecnología (CONACYT, project number CB-2011-01-168524). This work was also supported by the Deutsche Forschungsgemeinschaft (H.M.S., grant number 1008/6-1) and by the Wissenschaftliche Gesellschaft Freiburg (H.M.S. and G.S.).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Diego Santiago-Alarcon.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Santiago-Alarcon, D., MacGregor-Fors, I., Kühnert, K. et al. Avian haemosporidian parasites in an urban forest and their relationship to bird size and abundance. Urban Ecosyst 19, 331–346 (2016). https://doi.org/10.1007/s11252-015-0494-0

Download citation

Keywords

  • Urban parasitology
  • Zoonosis
  • Plasmodium
  • Haemoproteus
  • Leucocytozoon
  • Avian malaria