Urban Ecosystems

, Volume 19, Issue 1, pp 331–346 | Cite as

Avian haemosporidian parasites in an urban forest and their relationship to bird size and abundance

  • Diego Santiago-AlarconEmail author
  • Ian MacGregor-Fors
  • Katharina Kühnert
  • Gernot Segelbacher
  • H. Martin Schaefer


Urbanization has been identified as a threat to biodiversity due to landscape modifications. Studies of parasite ecology in urbanized areas lagged behind those made on macro organisms. Here we studied infection prevalence of haemosporidian parasites in an avian community of an urban forest from Germany, and its relationship with bird abundance and body mass. We used PCR to amplify a fragment of the mtDNA cyt b gene to determine the infection status of birds, and bird point counts to determine bird relative abundances. The avifauna was dominated by two small sized insectivore passerines (Parus major, Cyanistes caeruleus), representing ~40 % of the total bird records. The highest haemosporidian prevalence was recorded for Turdus philomelos (100 %) and for Fringilla coelebs (75 %). Bird abundance and body mass were positively associated with infection status for two haemosporidian genera: Plasmodium and Leucocytozoon. Infection rate was lower in juveniles compared to adult birds. We recorded a total of 7 Plasmodium, 26 Haemoproteus, and 10 Leucocytozoon lineages. Avian malaria (P. relictum) was detected infecting 5 individuals of P. major, the most abundant species in the community. These results, together with those of previous studies at the same site, suggest that potentially any of the genetic haemosporidian lineages detected in this urban forest can be transmitted across native and pet bird species, and to species of conservation concern housed at aviaries.


Urban parasitology Zoonosis Plasmodium Haemoproteus Leucocytozoon Avian malaria 



We thank Marie Melchior, Rebecca Bloch, Claudia Hermes, and Gregor Rolshausen for assistance during fieldwork. D.S.-A. was funded by the Alexander von Humboldt Foundation (post-doctoral grant) and by Consejo Nacional de Ciencia y Tecnología (CONACYT, project number CB-2011-01-168524). This work was also supported by the Deutsche Forschungsgemeinschaft (H.M.S., grant number 1008/6-1) and by the Wissenschaftliche Gesellschaft Freiburg (H.M.S. and G.S.).

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Alberti M (2008) Advances in urban ecology: integrating humans and ecological processes in urban ecosystems. Springer, New YorkCrossRefGoogle Scholar
  2. Allan SA, Bernier UR, Kline DL (2006) Laboratory evaluation of avian odors for mosquito (Diptera: Culicidae) attraction. J Med Entomol 43:225–231CrossRefPubMedGoogle Scholar
  3. Atkinson CT, Dusek RJ, Woods KL, Iko WM (2000) Pathogenicity of avian malaria in experimentally infected Hawaii Amakihi. J Wildl Dis 36:197–204CrossRefPubMedGoogle Scholar
  4. Atkinson CT, Thomas NJ, Hunter DB (2008) Parasitic diseases of wild birds. Wiley-Blackwell, Wiley, IowaCrossRefGoogle Scholar
  5. Beaudoin L (1971) A model for the ecology of avian malaria. J Wildl Dis 7:5–3CrossRefPubMedGoogle Scholar
  6. Belo NO, Pinheiro RT, Reis ES, Ricklefs RE, Braga EM (2011) Prevalence and lineage diversity of avian haemosporidians from three distinct cerrado habitats in Brazil. PLoS ONE 6(3), e17654. doi: 10.1371/journal.pone.0017654 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bennett GF, Bishop MA, Peirce MA (1993) Checklist of the avian species of Plasmodium Marchiafava and Celli, 1885 (Apicomplexa) and their distribution by avian family and Wallacean life zones. Syst Parasitol 26:171–179CrossRefGoogle Scholar
  8. Bennett GF, Peirce MA, Earlé RA (1994) An annotated checklist of the valid avian species of Haemoproteus, Leucocytozoon (Apicomplexa, Haemosporida) and Hepatozoon (Apicomplexa, Haemogregarinidae). Syst Parasitol 29:61–73CrossRefGoogle Scholar
  9. Bensch S, Stjernman M, Hasselquist D, Örjan Ö, Hannson B, Westerdahl H, Pinheiro RT (2000) Host specificity in avian blood parasites: a study of Plasmodium and Haemoproteus mitocondrial DNA amplified from birds. Proc R Soc Lond B 267:1583–1589CrossRefGoogle Scholar
  10. Bensch S, Hellgren O, Pérez-Tris J (2009) A public database of malaria parasites and related haemosporidians in avian hosts based on mitochondrial cytochrome b lineages. Mol Ecol Resour 9:1353–1358CrossRefPubMedGoogle Scholar
  11. Bentz S, Rigaud T, Barroca M, Martin-Laurent F, Bru D, Moreau J, Faivre B (2006) Sensitive measure of prevalence and parasitaemia of haemosporidia from European blackbird (Turdus merula) populations: value of PCR-RFLP and quantitative PCR. Parasitology 133:685–692CrossRefPubMedGoogle Scholar
  12. Berkowitz AR, Nilon CH, Hollweg KS (2003) Understanding urban ecosystems: a new frontier for science and education. Springer, New YorkGoogle Scholar
  13. Bradley CA, Altizer S (2007) Urbanization and the ecology of wildlife diseases. Trends Ecol Evol 22:95–102CrossRefPubMedGoogle Scholar
  14. Carlson JS, Martínez-Gómez JE, Cornel A, Loiseau C, Sehgal RNM (2011) Implications of Plasmodium parasite infected mosquitoes on an insular avifauna: the case of Socorro Island, México. J Vector Ecol 36:213–220CrossRefPubMedGoogle Scholar
  15. Chao A, Chiu CH (2013) Estimation of species richness and shared species richness. In: Balakrishnan N (ed) Methods and applications of statistics in the atmospheric and Earth sciences. Wiley, New York, pp 76–111Google Scholar
  16. Chiesura A (2004) The role of urban parks for the sustainable city. Landsc Urban Plan 68:129–138CrossRefGoogle Scholar
  17. Cosgrove CL, Wood MJ, Day KP, Sheldon BC (2008) Seasonal variation in Plasmodium prevalence in a population of blue tits Cyanistes caeruleus. J Anim Ecol 77:540–548CrossRefPubMedGoogle Scholar
  18. Czech B, Krausman PR, Devers PK (2000) Economic associations among causes of species endangerment in the United States. Bioscience 50:593–601CrossRefGoogle Scholar
  19. Delgado-V CA, French K (2012) Parasite-bird interactions in urban areas: current evidence and emerging questions. Landsc Urban Plan 105:5–14CrossRefGoogle Scholar
  20. Evans KL, Gaston KJ, Sharp SP, McGowan A, Simeoni M, Hatchwell BJ (2009) Effects of urbanisation on disease prevalence and age structure in blackbird Turdus merula populations. Oikos 118:774–782CrossRefGoogle Scholar
  21. Fokidis HB, Greiner EC, Deviche P (2008) Interspecific variation in avian blood parasites and haematology associated with urbanization in a desert habitat. J Avian Biol 39:300–310CrossRefGoogle Scholar
  22. Geue D, Partecke J (2008) Reduced parasite infestation in urban Eurasian blackbirds (Turdus merula): a factor favouring urbanization? Can J Zool 86:1419–1425CrossRefGoogle Scholar
  23. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98Google Scholar
  24. Hatcher MJ, Dunn AM (2011) Parasites in ecological communities: from interactions to ecosystems. Cambridge Univ. Press, CambridgeCrossRefGoogle Scholar
  25. Hatchwell BJ, Wood MJ, Anwar M, Perrins CM (2000) The prevalence and ecology of the haematozoan parasites of European blackbirds, Turdus merula. Can J Zool 78:684–687CrossRefGoogle Scholar
  26. (HBW) Handbook of the Birds of the World (2013) Handbook of the birds of the world alive. Lynx Editions. Last accessed: December 20, 2013
  27. Hellgren O, Waldenström J, Bensch S (2004) A new PCR assay for simultaneous studies of Leucocytozoon, Plasmodium, and Haemoproteus from avian blood. J Parasitol 90:797–802CrossRefPubMedGoogle Scholar
  28. Hellgren O, Pérez-Tris J, Bensch S (2009) A jack-of-all-trades and still a master of some: prevalence and host range in avian malaria and related blood parasites. Ecology 90:2840–2849CrossRefPubMedGoogle Scholar
  29. Hudson PJ, Dobson AP, Lafferty KD (2006) Is a healthy ecosystem one that is rich in parasites? Trends Ecol Evol 21:381–385CrossRefPubMedGoogle Scholar
  30. Hutto RL, Pletschet SM, Hendricks P (1986) A fixed-radius point count method for non-breeding and breeding season use. Auk 103:593–602Google Scholar
  31. Jansen CC, Webb CE, Graham GC, Craig SB, Zborowski P, Ritchie SA, Russell RC, van den Hurk AF (2009) Blood sources of mosquitoes collected from urban and peri-urban environments in Eastern Australia with species-specific molecular analysis of avian blood meals. Am J Trop Med Hyg 81:849–857CrossRefPubMedGoogle Scholar
  32. Johnson EP, Underhill GW, Cox JA, Threlkeld WL (1938) A blood protozoon of turkeys transmitted by Simulium nigroparvum (Twinn). Am J Hyg 27:649–665Google Scholar
  33. Keeling MJ, Rohani P (2008) Modeling infectious diseases in humans and animals. Princeton Univ. Press, PrincetonGoogle Scholar
  34. Keesing F, Ostfeld RS (2012) An ecosystem service of biodiversity: the protection of human health against infectious disease. In: Aguirre AA, Ostfeld RS, Daszak P (eds) New directions in conservation medicine: applied cases of ecological health. Oxford University Press, New York, pp 56–66Google Scholar
  35. Kilpatrick AM, Kramer LD, Jones MJ, Marra PP, Daszak P (2006) West Nile virus epidemics in North America are driven by shifts in mosquito feeding behavior. PLoS Biol 4, e82. doi: 10.1371/journal.pbio.0040082 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Kissam JB, Noblet R, Garris GI (1975) Large-scale aerial treatment o an endemic area with Abate granular larvicide to control black flies (Diptera Simuliidae) and suppress Leucocytozoon smithi of turkeys. J Med Entomol 12:359–362CrossRefPubMedGoogle Scholar
  37. Klowden MJ, Zweibel LJ (2005) Vector olfaction and behavior. In: Marquardt WC (ed) Biology of disease vectors, 2nd edn. Elsevier Academic Press, San Diego, pp 277–287Google Scholar
  38. Knowles SCL, Wood MJ, Alves R, Wilkin TA, Bensch S, Sheldon BC (2011) Molecular epidemiology of malaria prevalence and parasitaemia in a wild bird population. Mol Ecol 20:1062–1076CrossRefPubMedGoogle Scholar
  39. Knowles SCL, Wood MJ, Alves R, Sheldon BC (2014) Dispersal in a patchy landscape reveals contrasting determinants of infection in a wild avian malaria system. J Animal Ecol 83:429–439CrossRefGoogle Scholar
  40. Križanauskienė A, Pérez-Tris J, Palinauskas V, Hellgren O, Bensch S, Valkiūnas G (2010) Molecular phylogenetic and morphological analysis of haemosporidian parasites (Haemosporida) in a naturally infected European songbird, the Blackcap Sylvia atricapilla, with description of Haemoproteus pallidulus sp. nov. Parasitology 137:217–227CrossRefPubMedGoogle Scholar
  41. Lafferty KD, Dobson AP, Kuris AM (2006) Parasites dominate food web links. Proc Natl Acad Sci U S A 103:11211–11216CrossRefPubMedPubMedCentralGoogle Scholar
  42. Lafferty KD, Allesina S, Arim M, Briggs CJ, De Leo G, Dobson AP, Dunne JA, Johnson PTJ, Kuris AM, Marcogliese DJ, Martinez ND, Memmott J, Marquet PA, McLaughlin JP, Mordecai EA, Pascual M, Poulin R, Thieltges DW (2008) Parasites in food webs: the ultimate missing links. Ecol Lett 11:533–546CrossRefPubMedPubMedCentralGoogle Scholar
  43. LeGros A, Stracey CM, Robinson SK (2011) Associations between northern mockingbirds and the parasite Philornis porteri in relation to urbanization. Wilson J Ornithol 123:788–796CrossRefGoogle Scholar
  44. Levin I, Outlaw DC, Vargas FH, Parker PG (2009) Plasmodium blood parasite found in endangered Galapagos penguins (Spheniscus mendiculus). Biol Conserv 142:3191–3195CrossRefGoogle Scholar
  45. Lüdtke B, Moser I, Santiago-Alarcon D, Fischer M, Kalko EKV, Schaefer HM, Suarez-Rubio M, Tschapka M, Renner SC (2013) Associations of forest type, parasitism and body condition of two European Passerines, Fringilla coelebs and Sylvia atricapilla. PLoS ONE 8(12), e81395. doi: 10.1371/journal.pone.0081395 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Magurran AE (2004) Measuring biological diversity. Blackwell, OxfordGoogle Scholar
  47. Martin LB, Boruta M (2014) The impact of urbanization on avian disease transmission and emergence. In: Gil D, Brumm H (eds) Avian Urban Ecology: behavioural and physiological adaptations. Oxfor Univ. Press, Oxford, pp 116–128Google Scholar
  48. Martínez- de la Puente J, Merino S, Tomás G, Moreno J, Morales J, Lobato E, García-Fraile S, Belda EJ (2010) The blood parasite Haemoproteus reduces survival in a wild bird: a medication experiment. Biol Lett 6:663–665CrossRefGoogle Scholar
  49. Marzal A, de Lope F, Navarro C, Møller AP (2005) Malaria parasites decrease reproductive success: an experimental study in a passerine bird. Oecologia 142:541–545CrossRefPubMedGoogle Scholar
  50. McKinney ML (2002) Urbanization, biodiversity and conservation. Bioscience 52:883–890CrossRefGoogle Scholar
  51. Medeiros MCI, Hamer GL, Ricklefs RE (2013) Host compatibility rather than vector-host-encounter rate determines the host range of avian Plasmodium parasites. Proc R Soc Lond B 280:20122947CrossRefGoogle Scholar
  52. Merino S, Moreno J, Sanz JJ, Arriero E (2000) Are avian blood parasites pathogenic in the wild? A medication experiment in blue tits (Parus caeruleus). Proc R Soc Lond B 267:2507–2510CrossRefGoogle Scholar
  53. Møller AP, Nielsen JT (2007) Malaria and risk of predation: a comparative study of birds. Ecology 88:871–881CrossRefPubMedGoogle Scholar
  54. Murata K, Nii R, Sasaki E, Ishikawa S, Sato Y, Sawabe K, Tsuda Y, Matsumoto R, Suda A, Ueda M (2008) Plasmodium (Bennettinia) juxtanucleare infection in a captive white eared-pheasant (Crossoptilon crossoptilon) at a Japanese Zoo. J Vet Med Sci 70:203–205CrossRefPubMedGoogle Scholar
  55. Pacheco MA, Escalante AA, Garner MM, Bradley GA, Aguilar RF (2011) Haemosporidian infection in captive masked bobwhite quail (Colinus virginianus ridgwayi), an endangered subspecies of the northern bobwhite quail. Vet Parasitol 182:113–120CrossRefPubMedPubMedCentralGoogle Scholar
  56. Palinauskas V, Valkiūnas G, Bolshakov CV, Bensch S (2008) Plasmodium relictum (lineage P-SGS1): effects on experimentally infected passerine birds. Exp Parasitol 120:372–380CrossRefPubMedGoogle Scholar
  57. Palinauskas V, Valkiūnas G, Križanauskienė A, Bensch S, Bolshakov CV (2009) Plasmodium relictum (lineage P-SGS1): further observation of effects on experimentally infected passeriform birds, with remarks on treatment with Malarone™. Exp Parasitol 123:134–139CrossRefPubMedGoogle Scholar
  58. Palinauskas V, Valkiūnas G, Bolshakov CV, Bensch S (2011) Plasmodium relictum (lineage SGS1) and Plasmodium ashfordi (lineage GRW2): the effects of the coinfection on experimentally infected passerine birds. Exp Parasitol 127:527–533CrossRefPubMedGoogle Scholar
  59. Palinauskas V, Iezhova TA, Križanauskienė A, Markovets MY, Bensch S, Valkiūnas (2013) Molecular characterization and distribution of Haemoproteus minutus (Haemosporida, Haemoproteidae): a pathogenic avian parasite. Parasitol Int 62:358–363CrossRefPubMedGoogle Scholar
  60. Paperna I, Martelli P (2008) Haemosporidian infections in captive exotic glossy starling Lasmprotornis chalybaeus in Hong Kong. Folia Parasitol 55:7–12CrossRefPubMedGoogle Scholar
  61. Pérez-Tris J, Bensch S (2005a) Diagnosing genetically diverse avian malarial infections using mixed sequence analysis and TA-cloning. Parasitology 131:15–23CrossRefPubMedGoogle Scholar
  62. Pérez-Tris J, Bensch S (2005b) Dispersal increases local transmission of avian malaria parasites. Ecol Lett 8:838–845CrossRefGoogle Scholar
  63. Pérez-Tris J, Hellgren O, Križanauskienė A, Waldenström J, Secondi J, Bonneaud C, Fjeldså J, Hasselquist D, Bensch S (2007) Within-host speciation of malaria parasites. PLoS ONE 2, e235. doi: 10.1371/journal.pone.0000235 CrossRefPubMedPubMedCentralGoogle Scholar
  64. Randolph SE, Dobson ADM (2012) Pangloss revisited: a critique of the dilution effect and the biodiversity buffers-disease paradigm. Parasitology 139:847–863CrossRefPubMedGoogle Scholar
  65. Reiczigel J (2003) Confidence intervals for the binomial parameter: some new considerations. Stat Med 22:611–621CrossRefPubMedGoogle Scholar
  66. Richards SL, Ponnusamy L, Unnasch TR, Hassan HK, Apperson CS (2006) Host-feeding patterns of Aedes albopictus (Diptera: Culicidae) in relation to availability of human and domestic animals in suburban landscapes of Central North Carolina. J Med Entomol 43:543–551CrossRefPubMedPubMedCentralGoogle Scholar
  67. Ricklefs RE, Fallon SM, Bermingham E (2004) Evolutionary relationships, cospeciation, and host switching in avian malaria parasites. Syst Biol 53:111–119CrossRefPubMedGoogle Scholar
  68. Rózsa L, Reiczigel J, Majoros G (2000) Quantifying parasites in samples of hosts. J Parasitol 86:228–232CrossRefPubMedGoogle Scholar
  69. Santiago-Alarcon D, Bloch R, Rolshausen G, Schaefer HM, Segelbacher G (2011) Prevalence, diversity, and interaction patterns of avian haemosporidians in a four-year study of blackcaps in a migratory divide. Parasitology 138:824–835CrossRefPubMedGoogle Scholar
  70. Santiago-Alarcon D, Havelka P, Schaefer HM, Segelbacher G (2012a) Blood meal analysis reveals avian Plasmodium infections and broad host preferences of Culicoides (Diptera: Ceratopogonidae) vectors. PLoS ONE 7, e31098. doi: 10.1371/journal.pone.0031098 CrossRefPubMedPubMedCentralGoogle Scholar
  71. Santiago-Alarcon D, Palinauskas V, Schaefer HM (2012b) Diptera vectors of avian haemosporidian parasites: untangling parasite life cycles and their taxonomy. Biol Rev 87:928–964CrossRefPubMedGoogle Scholar
  72. Santiago-Alarcon D, Havelka P, Pineda E, Schaefer HM, Segelbacher G (2013a) Urban forests as hubs for novel zoonosis: blood meal analysis, seasonal variation in Culicoides (Diptera: Ceratopogonidae) vectors, and avian haemosporidians. Parasitology 140:1799–1810CrossRefPubMedGoogle Scholar
  73. Santiago-Alarcon D, Mettler R, Segelbacher G, Schaefer HM (2013b) Haemosporidian parasitism in the blackcap (Sylvia atricapilla) in relation to spring arrival and body condition. J Avian Biol 44:521–530CrossRefGoogle Scholar
  74. Santiago-Alarcon D, Rodríguez-Ferraro A, Parker PG, Ricklefs RE (2014) Different meal, same flavor: cospeciation and host switching of haemosporidian parasites in some non-passerine birds. Parasites & Vectors 7: 286;
  75. Scheuerlein A, Ricklefs RE (2004) Prevalence of blood parasites in European passeriform birds. Proc R Soc Lond B 271:1363–1370CrossRefGoogle Scholar
  76. Shochat E (2004) Credit or debit? Resource input changes population dynamics of city-slicker birds. Oikos 106:622–626CrossRefGoogle Scholar
  77. Shochat E, Lerman SB, Anderies JM, Warren PS, Faeth SH, Nilon CH (2010) Invasion, competition, and biodiversity loss in urban ecosystems. Bioscience 60:199–208CrossRefGoogle Scholar
  78. Svensson-Coelho M, Ellis VA, Loiselle BA, Blake JG, Ricklefs RE (2014) Reciprocal specialization in multihost malaria parasite communities of birds: a temperate-tropical comparison. Am Nat 184:624–635CrossRefPubMedGoogle Scholar
  79. Szöllősi E, Cichoń M, Eens M, Hasselquist D, Kempenaers B, Merino S, Nilsson J-Å, Rosivall B, Rytkönen S, Török J, Wood MJ, Garamszegi LZ (2011) Determinants of distribution and prevalence of avian malaria in blue tit populations across Europe: separating host and parasite effects. J Evol Biol 24:2014–2024CrossRefPubMedGoogle Scholar
  80. Tempelis CH, Washino RK (1967) Host-feeding patterns of Culex tarsalis in the Sacramento Valley, California with notes on other species. J Med Entomol 4:315–318CrossRefPubMedGoogle Scholar
  81. Thomas NJ, Hunter DB, Atkinson CT (2007) Infectious diseases of wild birds. Blackwell Publishing, IowaCrossRefGoogle Scholar
  82. Tzoulas K, Korpela K, Venn S, Yli-Pelkonen V, Kaźmierczak A, Niemela J, James P (2007) Promoting ecosystem and human health in urban areas using green infrastructure: a literature review. Landsc Urban Plan 81:167–178CrossRefGoogle Scholar
  83. Valkiūnas G (2005) Avian malaria parasites and other haemosporidia. CRC Press, Boca RatonGoogle Scholar
  84. Weinandt ML, Meyer M, Strand M, Lindsay AR (2012) Cues used by the black fly, Simulium annulus, for attraction to the common loon (Gavia immer). J Vector Ecol 37:359–364CrossRefPubMedGoogle Scholar
  85. Whiteman NK, Parker PG (2005) Using parasites to infer host population history: a new rationale for parasite conservation. Anim Conserv 8:175–181CrossRefGoogle Scholar
  86. Wood JM, Cosgrove CL, Wilkin TA, Knowles SCL, Day KP, Sheldon BC (2007) Within population variation in prevalence and lineage distribution of avian malaria in bluetits, Cyanistes caeruleus. Mol Ecol 16:3263–3273CrossRefPubMedGoogle Scholar
  87. Yorinks N, Atkinson CT (2000) Effects of malaria on activity budgets of experimentally infected juvenile Apapane (Himatione sanguinea). Auk 117:731–773CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Diego Santiago-Alarcon
    • 1
    • 3
    Email author
  • Ian MacGregor-Fors
    • 2
  • Katharina Kühnert
    • 3
  • Gernot Segelbacher
    • 4
  • H. Martin Schaefer
    • 3
  1. 1.Red de Biología y Conservación de Vertebrados, Laboratorio de Ecología de Vertebrados e Interacciones ParasitariasInstituto de Ecología A.C.XalapaMexico
  2. 2.Red de Ambiente y Sustentabilidad, Laboratorio de Ecología en Ambientes PerturbadosInstituto de Ecología A.C.XalapaMexico
  3. 3.Department of Ecology and Evolutionary BiologyUniversity of FreiburgFreiburgGermany
  4. 4.Department of Wildlife Ecology and ManagementUniversity of FreiburgFreiburgGermany

Personalised recommendations