A comparison of the growth and cooling effectiveness of five commonly planted urban tree species

Abstract

It is often claimed that evapotranspiration from urban trees can mitigate the urban heat island and adapt our cities to climate change; however, the relative effectiveness of different tree species has rarely been investigated. The current study addressed this shortcoming by comparing the growth and physiology of five commonly planted tree species: Sorbus arnoldiana, Crataegus laevigata, Malus ‘Rudolph’, Pyrus calleryana and Prunus ‘Umineko’. The study was conducted between March and November, 2011 in eight different streets of Manchester, UK where trees had been growing for 6 years in the same growing conditions. The study showed that evapotranspirational cooling is closely related to the growth and stress tolerance of tree species. Of the species tested, Prunus ‘Umineko’ and P. calleryana were the fastest growing and Malus ‘Rudolph’ was the slowest growing. In general faster growing species showed higher leaf area index (LAI) and higher stomatal conductivity and so provided more cooling. However, Prunus ‘Umineko’ had surprisingly low cooling and showed signs of drought stress. P. calleryana showed up to 100 % higher stomatal conductance than the other tree species. Combining the higher LAI and wider canopy, P. calleryana and C. laevigata provided cooling up to 2.2 kW tree−1, 3 to 4 times of cooling to that of Prunus ‘Umineko’ and S. arnoldiana and showed no signs of drought stress. Malus ‘Rudolph’ showed stress tolerance but provided low cooling. Prunus ‘Umineko’ and S. arnoldiana with their thin and sparse canopy provided low cooling and showed susceptibility to urban stress.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Armson D, Stringer P, Ennos AR (2012) The effect of tree shade and grass on surface and globe temperatures in an urban area. Urban For Urban Green 11:245–255

    Article  Google Scholar 

  2. Armson D, Rahman MA, Ennos AR (2013) A comparison of the shading effectiveness of five different urban tree species. Arboric Urban For 39(4):157–164

  3. Bassuk NL, Curtis DF, Marracana BZ, Neal B (2003) Recommended urban trees: site assessment and tree selection for stress tolerance. Urban Horticulture Institute, Cornell University, Ithaca, New York

    Google Scholar 

  4. Bovard BD, Curtis PS, Vogel CS, Su HB, Schmid HP (2005) Environmental controls on sap flow in a northern hardwood forest. Tree Physiol 25(1):31–38

    Article  CAS  PubMed  Google Scholar 

  5. Bowden JD, Bauerle WL (2008) Measuring and modeling the variation in species-specific transpiration in temperate deciduous hardwoods. Tree Physiol 28(11):1675–1683

    Article  PubMed  Google Scholar 

  6. Britt C, Johnston M (2008) Trees in Town II A new survey of Urban trees in England and their condition and management. Research for Amenity Trees No. 9. Communities and Local Government, London

  7. Catovsky S, Holbrook NM, Bazzaz FA (2002) Coupling whole-tree transpiration and canopy photosynthesis in coniferous and broad-leaved tree species. Can J For Res 32(2):295–309. doi:10.1139/x01-199

    Article  Google Scholar 

  8. Close RE, Nguyen PV, Kielbaso JJ (1996) Urban vs. natural sugar maple growth: i. stress symptoms and phenology in relation to site characteristics. J Arboric 22(3):144–150

    Google Scholar 

  9. Curran PJ, Dungan JL, Gholz HL (1990) Exploring the relationship between reflectance red edge and chlorophyll content in slash pine. Tree Physiol 7(1–4):33–48

    Article  CAS  PubMed  Google Scholar 

  10. De Nicola F, Alfani A, D’Ambrosio N (2011) Impact of the mediterranean urban environment on photosynthetic efficiency of quercus ilex leaves. Water Air Soil Pollut 220(1–4):151–160. doi:10.1007/s11270-011-0742-8

    Article  Google Scholar 

  11. Demmig B, Bjorkman O (1987) Comparison of the effect of excessive light on chlorophyll fluorescence (77 k) and photon yield of O2 evolution in leaves of higher-plants. Planta 171(2):171–184. doi:10.1007/bf00391092

    Article  CAS  PubMed  Google Scholar 

  12. Filella I, Serrano L, Serra J, Penuelas J (1995) Evaluating wheat nitrogen status with canopy reflectance indexes and discriminant-analysis. Crop Sci 35(5):1400–1405

    Article  Google Scholar 

  13. Gitelson AA, Gritz Y, Merzlyak MN (2003) Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. J Plant Physiol 160(3):271–282. doi:10.1078/0176-1617-00887

    Article  CAS  PubMed  Google Scholar 

  14. Givnish TJ (2002) Adaptive significance of evergreen vs. deciduous leaves: solving the triple paradox. Silva Fenn 36(3):703–743

    Article  Google Scholar 

  15. Griffin JJ, Ranney TG, Pharr DM (2004) Photosynthesis, chlorophyll fluorescence, and carbohydrate content of Illicium taxa grown under varied irradiance. J Am Soc Hortic Sci 129(1):46–53

    Google Scholar 

  16. Gu Z, Shi X, Li L, Yu D, Liu L, Zhang W (2011) Using multiple radiometric correction images to estimate leaf area index. Int J Remote Sens 32(24):9441–9454

    Article  Google Scholar 

  17. Heisler GM (1986) Energy savings with trees. J Arboric 12(5):113–125

    Google Scholar 

  18. Husch B, Miller CI, Beers TW (1982) Forest mensuration. John Wiley and Sons, New York

    Google Scholar 

  19. James P, Tzoulas K, Adams MD, Barber A, Box J, Breuste J, Elmqvist T, Frith M, Gordon C, Greening KL, Handley J, Haworth S, Kazmierczak AE, Johnston M, Korpela K, Moretti M, Niemela J, Pauleit S, Roe MH, Sadler JP, Thompson CW (2009) Towards an integrated understanding of green space in the European built environment. Urban For Urban Green 8(2):65–75. doi:10.1016/j.ufug.2009.02.001

    Article  Google Scholar 

  20. Kent D, Halcrow D, Wyatt T, Shultz S (2004) Detecting stress in southern live oak (Quercus virginiana) and sand live oak (Q. virginiana var. Geminata). J Arboric 30(3):146–153

    Google Scholar 

  21. Kjelgren R, Montague T (1998) Urban tree transpiration over turf and asphalt surfaces. Atmos Environ 32(1):35–41

    Article  CAS  Google Scholar 

  22. Kopinga J, Van Den Burg J (1995) Using soil and foliar analysis to diagnose the nutritional status of urban trees. J Arboric 21(1):17–24

    Google Scholar 

  23. Kumagai T, Nagasawa H, Mabuchi T, Ohsaki S, Kubota K, Kogi K, Utsumi Y, Koga S, Otsuki K (2005) Sources of error in estimating stand transpiration using allometric relationships between stem diameter and sapwood area for cryptomeria japonica and chamaecyparis obtusa. For Ecol Manag 206(1–3):191–195. doi:10.1016/j.foreco.2004.10.066

    Article  Google Scholar 

  24. Lambers H, Chapin FS, III, Pons TL (1998) Plant physiological ecology. Plant physiological ecology. Springer-Verlag New York, Inc.; Springer-Verlag

  25. Larsen FK, Kristoffersen P (2002) Tilia’s physical dimensions over time. J Arboric 28(5):209–214

    Google Scholar 

  26. Lawlor DW (2002) Limitation to photosynthesis in water-stressed leaves: Stomata vs. metabolism and the role of ATP. Ann Bot 89:871–885. doi:10.1093/aob/mcf110

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Leuzinger S, Vogt R, Korner C (2010) Tree surface temperature in an urban environment. Agric For Meteorol 150(1):56–62. doi:10.1016/j.agrformet.2009.08.006

    Article  Google Scholar 

  28. Lieth H (1963) The role of vegetation in the carbon dioxide content of the atmosphere. J Geophys Res 68:3887–3898

    Article  CAS  Google Scholar 

  29. Maki DS, Colombo SJ (2001) Early detection of the effects of warm storage on conifer seedlings using physiological tests. For Ecol Manag 154(1–2):237–249. doi:10.1016/s0378-1127(00)00630-7

    Article  Google Scholar 

  30. Maxwell K, Johnson GN (2000) Chlorophyll fluorescence - a practical guide. J Exp Bot 51(345):659–668. doi:10.1093/jexbot/51.345.659

    Article  CAS  PubMed  Google Scholar 

  31. McPherson EG, Nowak D, Heisler G, Grimmond S, Souch C, Grant R, Rowntree R (1997) Quantifying urban forest structure, function, and value: the Chicago Urban forest climate project. Urban Ecosyst 1:49–61

    Article  Google Scholar 

  32. Menzies J, Jensen RR, Brondizio E, Moran E, Mausel P (2007) The accuracy of neural network and regression leaf area estimators in the Amazon Basin. Gisci Remote Sens 44:82–92

    Article  Google Scholar 

  33. Miller DR (1980) The two-dimensional energy budget of a forest edge with field-measurements at a forest parking lot interface. Agric Meteorol 22(1):53–78. doi:10.1016/0002-1571(80)90028-x

    Article  Google Scholar 

  34. Montague T, Kjelgren R, Allen R, Wester D (2004) Water loss estimates for five recently transplanted landscape tree species in a semi-arid climate. J Environ Hortic 22(4):189–196

    Google Scholar 

  35. Nowak D (1994) Atmospheric carbon dioxide reduction by Chicago’s urban forest. Chicago’s Urban Forest Ecosystem: Results of the Chicago Urban Forest Climate Project. USDA, Radnor, PA

  36. Nowak DJ (2000) The interactions between urban forests and global climate change. In: Abdollahi KK, Ning HZ, Appeaning A (eds) Global climate change & the urban forest. Franklin Press, Inc., LA, pp 31–44

    Google Scholar 

  37. Nowak DJ, Stevens JC, Sisinni SM, Luley CJ (2002) Effects of urban tree management and species selection on atmospheric carbon dioxide. J Arboric 28(3):113–122

    Google Scholar 

  38. Oke TR (1989) The micrometeorology of the urban forest. Philos Trans R Soc Lond B Biol Sci 324(1223):335–349. doi:10.1098/rstb.1989.0051

    Article  Google Scholar 

  39. Oren R, Phillips N, Katul G, Ewers BE, Pataki DE (1998) Scaling xylem sap flux and soil water balance and calculating variance: a method for partitioning water flux in forests. Ann Sci For 55(1–2):191–216. doi:10.1051/forest:19980112

    Article  Google Scholar 

  40. Ow LF, Yeo TY, Sim EK (2011) Identification of drought-tolerant plants for roadside greening-an evaluation of chlorophyll fluorescence as an indicator to screen for drought tolerance. Urban For Urban Green 10(3):177–184. doi:10.1016/j.ufug.2011.03.001

    Article  Google Scholar 

  41. Pataki DE, Oren R (2003) Species differences in stomatal control of water loss at the canopy scale in a mature bottomland deciduous forest. Adv Water Resour 26(12):1267–1278. doi:10.1016/j.advwatres.2003.08.001

    Article  Google Scholar 

  42. Pataki DE, McCarthy HR, Litvak E, Pincetl S (2011) Transpiration of urban forests in the Los Angeles metropolitan area. Ecol Appl 21(3):661–677. doi:10.1890/09-1717.1

    Article  PubMed  Google Scholar 

  43. Pauleit S (2003) Urban street tree plantings: indentifying the key requirements. Proc Inst Civ Eng Munic Eng 156(1):43–50

    Google Scholar 

  44. Percival GC (2004) Evaluation of physiological tests as predictors of young tree establishment and growth. J Arboric 30(2):80–91

    Google Scholar 

  45. Percival GC, Keary IP, Al-Habsi S (2006) An assessment of the drought tolerance of Fraxinus genotypes for urban landscape plantings. Urban For Urban Green 5(1):17–27. doi:10.1016/j.ufug.2006.03.002

    Article  Google Scholar 

  46. Pereira JS, Tenhunen JD, Lange OL, Beyschlag W, Meyer A, David MM (1986) Seasonal and diurnal patterns in leaf gas-exchange of eucalyptus globulus trees growing in portugal. Can J For Res 16(2):177–184. doi:10.1139/x86-033

    Article  Google Scholar 

  47. Peters EB, McFadden JP, Montgomery RA (2010) Biological and environmental controls on tree transpiration in a suburban landscape. J Geophys Res 115. doi:G04006 0.1029/2009jg001266

  48. Peters EB, Hiller RV, McFadden JP (2011) Seasonal contributions of vegetation types to suburban evapotranspiration. J Geophys Res 116. doi:G01003 10.1029/2010jg001463

  49. Porra RJ, Thompson WA, Kriedemann PE (1989) Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochim Biophys Acta 975:384–394

    Article  CAS  Google Scholar 

  50. Potchter O, Goldman D, Kadish D, Iluz D (2008) The oasis effect in an extremely hot and arid climate: the case of southern Israel. J Arid Environ 72(9):1721–1733. doi:10.1016/j.jaridenv.2008.03.004

    Article  Google Scholar 

  51. Rahman MA, Smith JG, Stringer P, Ennos AR (2011) Effect of rooting conditions on the growth and cooling ability of Pyrus calleryana. Urban For Urban Green 10(3):185–192. doi:10.1016/j.ufug.2011.05.003

    Article  Google Scholar 

  52. Reid R, Stephen P (2001) The farmer’s forest: multipurpose forestry for Australian farmers. Growers, Australian Master Tree

    Google Scholar 

  53. Resco V, Ignace DD, Sun W, Huxman TE, Weltzin JF, Williams DG (2008) Chlorophyll fluorescence, predawn water potential and photosynthesis in precipitation pulse-driven ecosystems - implications for ecological studies. Funct Ecol 22(3):479–483. doi:10.1111/j.1365-2435.2008.01396.x

    Article  Google Scholar 

  54. Saaroni H, Bitan A, Ben Dor E, Feller N (2004) The mixed results concerning the ’oasis effect’ in a rural settlement in the Negev Desert, Israel. J Arid Environ 58(2):235–248. doi:10.1016/j.jaridenv.2003.08.010

    Article  Google Scholar 

  55. Shashua-Bar L, Hoffman ME (2000) Vegetation as a climatic component in the design of an urban street - an empirical model for predicting the cooling effect of urban green areas with trees. Energy Build 31(3):221–235

    Article  Google Scholar 

  56. Souch CA, Souch C (1993) The effect of trees on summertime below canopy urban climates: a case study Bloomington, Indiana. J Arboric 19(5):303–312

    Google Scholar 

  57. Swoczyna T, Kalaji HM, Pietkiewicz S, Borowski J, Zaras-Januszkiewicz E (2010) Photosynthetic apparatus efficiency of eight tree taxa as an indicator of their tolerance to urban environments. Dendrobiol 63:65–75

    CAS  Google Scholar 

  58. Tang J, Bolstad PV, Ewers BE, Desai AR, Davis KJ, Carey EV (2006) Sap flux-upscaled canopy transpiration, stomatal conductance, and water use efficiency in an old growth forest in the Great Lakes region of the United States. J Geophys Res 111 (G2). doi:G02009 10.1029/2005jg000083

  59. Vincent MA (2005) On the spread and current distribution of Pyrus calleryana in the United States. Castanea 70(1):20–31

    Article  Google Scholar 

  60. Wenger KF (1984) Forestry handbook. John Wiley and Sons, New York

    Google Scholar 

  61. White DA, Turner NC, Galbraith JH (2000) Leaf water relations and stomatal behavior of four allopatric eucalyptus species planted in Mediterranean southwestern Australia. Tree Physiol 20(17):1157–1165

    Article  PubMed  Google Scholar 

  62. Whittaker RH, Likens GE (1973) Carbon in the Biota. Woodwell, George M and Erene V Pecan (Ed) U S Atomic Energy Commission Symposium Series, Vol 30 Carbon and the Biosphere Proceedings of the 24th Brookhaven Symposium in Biology Upton, N Y, USa, May 16–18, 1972 Vii + 392p Illus United States Atomic Energy Commission (Dist by the National Technical Information Service: Springfield, Va):281–302

  63. Wullschleger SD, Hanson PJ, Todd DE (2001) Transpiration from a multi-species deciduous forest as estimated by xylem sap flow techniques. For Ecol Manag 143(1–3):205–213. doi:10.1016/s0378-1127(00)00518-1

    Article  Google Scholar 

  64. Xie Q, Zhou Z, Chen F (2011) Quantifying the beneficial effect of different plant species on air quality improvement. Environ Eng Manag J 10(7):959–963

    CAS  Google Scholar 

  65. Yang J, McBride J, Zhou J, Sun Z (2005) The urban forest in Beijing and its role in air pollution reduction. Urban For Urban Green 3(2):65–78. doi:10.1016/j.ufug.2004.09.001

    Article  Google Scholar 

  66. Zanne AE, Lopez-Gonzalez G, Coomes DA, Ilic J, Jansen S, Lewis SL, Miller RB, Swenson NG, Wiemann MC, Chave J (2009) Global wood density database. Dryad. Identifier: http://hdl.handle.net/10255/dryad.235

  67. Zhang B, Zhao QG, Horn R, Baumgartl T (2001) Shear strength of surface soil as affected by soil bulk density and soil water content. Soil Tillage Res 59(3–4):97–106

    Article  Google Scholar 

Download references

Acknowledgments

This project was supported by a doctoral grant funded by the Sustainable Consumption Institute (SCI), University of Manchester and the European Union INTERREG IVB fund as part of the VALUE project. Thanks are due to Red Rose Forest for providing the initial growth data and to Dr. Giles Johnson for his cordial help during the experiment. Special thanks to Mr. Samuel Partey, Mr. David Arregui, Mr. William Park and Dr. James Gardiner for all their help.

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. A. Rahman.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rahman, M.A., Armson, D. & Ennos, A.R. A comparison of the growth and cooling effectiveness of five commonly planted urban tree species. Urban Ecosyst 18, 371–389 (2015). https://doi.org/10.1007/s11252-014-0407-7

Download citation

Keywords

  • Evapotranspiration
  • Growth
  • Cooling effectiveness
  • Stress tolerance
  • Leaf area index (LAI)
  • Stomatal conductivity