Urban and agricultural soils: conflicts and trade-offs in the optimization of ecosystem services

Abstract

On-going human population growth and changing patterns of resource consumption are increasing global demand for ecosystem services, many of which are provided by soils. Some of these ecosystem services are linearly related to the surface area of pervious soil, whereas others show non-linear relationships, making ecosystem service optimization a complex task. As limited land availability creates conflicting demands among various types of land use, a central challenge is how to weigh these conflicting interests and how to achieve the best solutions possible from a perspective of sustainable societal development. These conflicting interests become most apparent in soils that are the most heavily used by humans for specific purposes: urban soils used for green spaces, housing, and other infrastructure and agricultural soils for producing food, fibres and biofuels. We argue that, despite their seemingly divergent uses of land, agricultural and urban soils share common features with regards to interactions between ecosystem services, and that the trade-offs associated with decision-making, while scale- and context-dependent, can be surprisingly similar between the two systems. We propose that the trade-offs within land use types and their soil-related ecosystems services are often disproportional, and quantifying these will enable ecologists and soil scientists to help policy makers optimizing management decisions when confronted with demands for multiple services under limited land availability.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Baker LA, Wilson B, Fulton D, Horgan B (2008) Disproportionality as a framework to target pollution reduction from urban landscapes. Cities and the Environment 1. (3 October 2011; http://digitalcommons.lmu.edu/cgi/viewcontent.cgi?article=1016&context=cate)

  2. Bennett EM, Peterson GD, Gordon LJ (2009) Understanding relationships among multiple ecosystem services. Ecol Lett 12:1394–1404

    PubMed  Article  Google Scholar 

  3. Birkhofer K et al (2008) Long-term organic farming fosters below and aboveground biota: implications for soil quality, biological control and productivity. Soil Biol Biochem 40:2297–2308

    CAS  Article  Google Scholar 

  4. Birkhofer K, Endlweber K, Wolters V (2010) Einfluss der Landnutzung auf Diversität und Funktion der ober- und unterirdischen Fauna. In: Hotes S, Wolters V (eds) Forum Biodiversität. Oekom Verlag, pp 83–89

  5. Brown DG, Johnson KM, Loveland TR, Theobald DM (2005) Rural land use trends in the coterminous United States, 1950–2000. Ecol Appl 15:1851–1863

    Article  Google Scholar 

  6. Byrne LB, Grewal P (2008) Introduction to ecological landscaping: a holistic description and framework to guide the study and management of urban landscape parcels. Cities and the Environment 1. (3 October 2011; http://digitalcommons.lmu.edu/cgi/viewcontent.cgi?article=1030&context=cate)

  7. Cameron RWF, Blanuša T, Taylor JE, Salisbury A, Halstead AJ, Henricot B, Thomson K (2012) The domestic garden - Its contribution to urban green infrastructure. Urban Forestry & Urban Greening 11:129–137

  8. Cardinale BJ, Duffy JE, Gonzalez A, Hooper DU, Perrings C, Venail P, Narwani A, Mace GM, Tilman D, Wardle DA, Kinzig AP, Daily GC, Loreau M, Grace JB, Larigauderie A, Srivastava DS, Naeem S (2012) Biodiversity loss and its impact on humanity. Nature 486:59–67

    CAS  PubMed  Article  Google Scholar 

  9. Carpenter SR et al (2009) Science for managing ecosystem services: beyond the millennium ecosystem assessment. Proc Natl Acad Sci U S A 106:1305–1312

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  10. Daily GC (ed) (1997) Nature’s services: societal dependence on natural ecosystems. Island Press

  11. Effland WR, Pouyat RV (1997) The genesis, classification, and mapping of soils in urban areas. Urban Ecosyst 1:217–228

    Article  Google Scholar 

  12. Eigenbrod F, Bell VA, Davis HN, Heinemayer A, Armsworth PR, Gaston KJ (2011) The impact of projected increase in urbanization on ecosystem services. Proc. R. Soc. B. 278:3201–3208. doi:10.1098/rspb.2010.2754

  13. Ellis ECN, Ramankutty N (2008) Putting people on the map: anthropogenic biomes of the world. Front Ecol Environ 6:439–447

    Article  Google Scholar 

  14. Foley JA et al (2005) Global consequences of land use. Science 309:570–574

    CAS  PubMed  Article  Google Scholar 

  15. Folke C, Carpenter S, Elmqvist T, Gunderson L, Holling CS, Walker B (2002) Resilience and sustainable development: building adaptive capacity in a world of transformations. Ambio 31:437–440

    PubMed  Google Scholar 

  16. Fornara DA, Tilman D, Hobbie SE (2009) Landscape heterogeneity and farming practice influence biological control. J Ecol 97:48–56

    CAS  Article  Google Scholar 

  17. Frazer L (2005) Paving paradise: the peril of impervious surfaces. Environ Heal Perspect 113:456–462

    Article  Google Scholar 

  18. Grabosky J, Bassuk NL, Van Es H (1996) Testing of structural urban tree soil materials for use under pavement to increase street tree rooting volumes. J Arboric 22:255–263

    Google Scholar 

  19. Hatt BE, Fletcher TD, Walsh CJ, Taylor SL (2004) The influence of urban density and drainage infrastructure on the concentrations and loads of pollutants in small streams. Environ Manag 34:112–124. doi:10.1007/s00267-004-0221-8

    Article  Google Scholar 

  20. Heal G (2000) Nature and the market place: capturing the value of ecosystem services. Island Press

  21. Ineson P, Levin LA, Kneib RT, Hall Jr. RO, Weslawski JM, Bardgett RD, Wardle DA, Wall DH, Van der Putten WH, Zadeh H (2004) Cascading effects of deforestation on ecosystem services across soils and freshwater and marine sediments. In: Wall DH (ed) Sustaining biodiversity and ecosystem services in soils and sediments. Island Press, pp 225–248

  22. Kareiva P, Watts S, McDonald R, Boucher T (2007) Domesticated nature: shaping landscapes and ecosystems for human welfare. Science 316:1866–1869

    CAS  PubMed  Article  Google Scholar 

  23. Kaye JP, Burke IC, Mosier AR, Guerschman JP (2004) Methane and nitrous oxide fluxes from urban soils to the atmosphere. Ecol Appl 14:975–981

    Article  Google Scholar 

  24. Kleijn D, Berendse F, Smit R, Gilissen N (2001) Agri-environment schemes do not effectively protect biodiversity in Dutch agricultural landscapes. Nature 413:723–725

    CAS  PubMed  Article  Google Scholar 

  25. Lehmann A, Stahr K (2007) Nature and significance of anthropogenic urban soils. J Soils Sediments 7:247–260

    CAS  Article  Google Scholar 

  26. Lewis DB, Kaye JP, Gries C, Kinzig AP, Redman CL (2006) Agrarian legacy in soil nutrient pools of urbanizing arid lands. Glob Chang Biol 12:703–709

    Article  Google Scholar 

  27. Lovell ST, Johnston DM (2009) Creating multifunctional landscapes: how can the field of ecology inform the design of the landscape? Front Ecol Environ 7:212–220

    Article  Google Scholar 

  28. McPherson E, Nowak D, Heisler G, Grimmond S, Souch C, Grant R, Rowntree R (1997) Quantifying urban forest structure, function and value: the Chicago Urban Forest Climate Project. Urban Ecosyst 1:49–61

    Article  Google Scholar 

  29. McPherson G, Simpson JR, Peper PJ, Xiao Q (1999) Benefit-cost analysis of Modesto’s municipal urban forest. J Arboric 25:235–248

    Google Scholar 

  30. MEA (2005) Millennium ecosystem assessment: ecosystems and human well-being: synthesis. Island Press

  31. Mitchell R, Popham F (2007) Greenspace, urbanity, and health: relationships in England. J Epidemiol Community Health 13:138–151

    Google Scholar 

  32. Nelson E, Polasky S, Lewis DJ, Plantinga AJ, Lonsdorf E, White D, Bael D, Lawler JJ (2008) Efficiency of incentives to jointly increase carbon sequestration and species conservation on a landscape. PNAS 105:9471–9476

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  33. Novotny V (2003) Water quality: diffuse pollution and watershed management. John Wiley & Sons Inc

  34. Ostman O, Ekbom B, Bengtsson J (2001) Landscape heterogeneity and farming practice influence biological control. Basic Appl Ecol 2:365–371

    Article  Google Scholar 

  35. Ostrom E (2009) A general framework for analyzing sustainability of social-ecological systems. Science 325:419–422

    CAS  PubMed  Article  Google Scholar 

  36. Pataki DE, Carreiro MM, Cherrier J, Grulke NE, Jennings V, Pincet S, Pouyat RV, Whitlow TH, Zipperer WC (2011) Coupling biogeochemical cycles in urban environments: ecosystem services, green solutions, and misconceptions. Front Ecol Environ 9:27–36. doi:10.1890/090220

    Article  Google Scholar 

  37. Pavao-Zuckerman MA, Coleman DC (2007) Urbanization alters the functional composition, but not taxonomic diversity, of the soil nematode community. Appl Soil Ecol 35:329–339

    Article  Google Scholar 

  38. Plieninger T, Hochtl F, Spek T (2006) Traditional land-use and nature conservation in European rural landscapes. Environ Sci Pol 9:317–321

    Article  Google Scholar 

  39. Pouyat RV, Yesilonis ID, Nowak DJ (2006) Carbon storage by urban soils in the USA. J Environ Qual 35:1566–1575

    CAS  PubMed  Article  Google Scholar 

  40. Pouyat RV, Belt K, Pataki D, Groffman PM, Hom J, Band L (2007) Effects of urban land-use change on biogeochemical cycles. In: Canadell P, Pataki D, Pitelka L (eds) Terrestrial ecosystems in a changing world. Springer, Berlin-Heidelberg-New York, pp 45–58

    Chapter  Google Scholar 

  41. Pouyat RV, Szlavecz K, Yesilonis ID, Groffman PM, Schwarz K (2010) Chemical, physical, and biological characteristics of urban soils. In: Aitkenhead-Peterson J, Volder A (eds) Urban ecosystem ecology. Agronomy Monograph 55, pp 119–152

  42. Prescott CE (2010) Litter decomposition: what controls it and how can we alter it to sequester more carbon in forest soils. Biogeochemistry 101:133–149

    CAS  Article  Google Scholar 

  43. Raudsepp-Hearne C, Peterson GD, Bennett EM (2010) Ecosystem service bundles for analyzing trade-offs in diverse landscapes. Proc Natl Acad Sci U S A 107:5242–5247

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  44. Schlüter M, Savitsky AG, McKinney DC, Lieth H (2005) Optimizing long-term water allocation in the Amudarya River delta: a water management model for ecological impact assessment. Environ Model Softw 20:529–545

    Article  Google Scholar 

  45. Schueler T, Holland H (2000) Microbes and urban watersheds: concentrations, sources and pathways. In: Schueler T, Holland H (eds) The practice of watershed protection. The Center for Watershed Protection, Ellicott City, pp 554–565

    Google Scholar 

  46. Seto KC, Reenbergb A, Boone CG, Fragkias M, Haase D, Langanke T, Marcotullio P, Munroe DK, Olah B, Simon D (2012) Urban land teleconnections and sustainability. PNAS 109:7687–7692

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  47. Smith P, Gregory PJ, van Vuuren D, Obersteiner M, Havlik P, Rounsevell M, Woods J, Stehfest E, Bellarby J (2010) Competition for land. Philos Trans R Soc B Biol Sci 365:2941–2957

    Article  Google Scholar 

  48. Steinmann H-H, Gerowitt B (2008) Pflanzenproduktion und Biodiversität–Miteinander oder Gegensatz? In: von Tiedemann A, Heitefuss R, Feldmann F (eds) Pflanzenproduktion im Wandel–Wandel im Pflanzenschutz. Deutsche Phytomedizinische Gesellschaft, Braunschweig, pp 45–56

    Google Scholar 

  49. Swinton SM, Lupi F, Robertson GP, Hamilton SK (2007) Ecosystem services and agriculture: cultivating agricultural ecosystems for diverse benefits. Ecol Econ 64:245–252. doi:10.1016/j.ecolecon.2007.09.020

    Article  Google Scholar 

  50. Tallis H, Kareiva P, Marvier M, Chang A (2008) An ecosystem services framework to support both practical conservation and economic development. PNAS 105:9457–9464

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  51. Theobald DM (2005) Landscape patterns of exurban growth in the USA from 1980 to 2020. Ecology and Society 10: 32. (3 October 2011; www.ecologyandsociety.org/vol10/iss1/art32/)

  52. Tscharntke T, Bommarco R, Clough Y, Crist TO, Kleijn D, Rand TA, Tylianakis JM, van Nouhuys S, Vidal S (2007) Conservation biological control and enemy diversity on a landscape scale. Biol Control 43:294–309

    Article  Google Scholar 

  53. Turbé A, De Toni A, Benito P, Lavelle P, Lavelle P, Ruiz N, Van der Putten WH, Labouze E, Mudgal S (2010) Soil biodiversity: functions, threats and tools for policy makers. Bio Intelligence Service, IRD, and NIOO, Report for European Commission (DG Environment)

  54. UNCCD (1994) United Nations convention to combat desertification in those countries experiencing serious drought and/or desertification particularly in Africa: text with annexes

  55. Van der Putten WH, et al. (2004) Ecosystem processes in natural and managed terrestrial soils and the role of soil organisms in the sustainable delivery of ecosystem goods and services. In: Wall DH (ed) Sustaining biodiversity and ecosystem services in soils and sediments. Island Press, pp 15–43

  56. Vauramo S, Setälä H (2010) Urban belowground food-web responses to plant community manipulation–impacts on nutrient dynamics. Landsc Urban Plan 97:1–10

    Article  Google Scholar 

  57. Vitousek PM, Mooney HA, Lubchenco J, Melillo J (1997) Human domination of Earth’s ecosystems. Science 277:494–499

    CAS  Article  Google Scholar 

  58. Winkler R (2006) Valuation of ecosystem goods and services: part 1: an integrated dynamic approach. Ecol Econ 59:82–93

    Article  Google Scholar 

  59. Zurek MB, Henrichs T (2007) Linking scenarios across geographical scales in international environmental assessments. Technol Forecast Soc Chang 74:1282–1295

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to H. Setälä.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Setälä, H., Bardgett, R.D., Birkhofer, K. et al. Urban and agricultural soils: conflicts and trade-offs in the optimization of ecosystem services. Urban Ecosyst 17, 239–253 (2014). https://doi.org/10.1007/s11252-013-0311-6

Download citation

Keywords

  • Agriculture
  • Ecosystem services
  • Land use
  • Management optimization
  • Soil
  • Urban
  • Trade-off