Urban Ecosystems

, Volume 16, Issue 3, pp 593–616 | Cite as

Field and remotely sensed measures of soil and vegetation carbon and nitrogen across an urbanization gradient in the Boston metropolitan area

  • Preeti Rao
  • Lucy R. Hutyra
  • Steve M. Raciti
  • Adrien C. Finzi
Article

Abstract

Understanding the impact of urbanization on terrestrial biogeochemistry is critical for addressing society’s grand challenge of global environmental change. We used field observations and remotely sensed data to quantify the effects of urbanization on vegetation and soils across a 100-km urbanization gradient extending from Boston to Harvard Forest and Worcester, MA. At the field-plot scale, the normalized difference vegetation index (NDVI) was positively correlated with aboveground biomass (AGB) and foliar nitrogen (N) content and negatively correlated with impervious surface fraction. Unlike previous studies, we found no significant relationship between NDVI or impervious surface area (ISA) fraction and foliar N concentration. Patterns in foliar N appeared to be driven more strongly by changes in species composition rather than phenotypic plasticity across the urbanization gradient. For forest and non-residential development, soil nitrogen content increased with urban intensity. In contrast, residential land had consistently high soil N content across the gradient of urbanization. When field observations were scaled-up to the Boston Metropolitan Statistical Area (MSA), we found that soil and vegetation N content were negatively correlated with ISA fraction, an indicator of urban intensity. Our results demonstrated the importance of accounting for the influence of impervious surfaces when scaling field data across urban ecosystems. The combination of field data with remote sensing holds promise for disentangling the complex interactions that drive biogeochemical cycling in urbanizing landscapes. Empirical data that accurately characterize variations in urban biogeochemistry are critical to gain a mechanistic understanding of urban ecosystem function and to guide policy makers and planners in developing ecologically sensitive development strategies.

Keywords

Urbanization Gradient Vegetation Soil Nitrogen Carbon Remote sensing NDVI 

Supplementary material

11252_2013_291_MOESM1_ESM.docx (13 kb)
Online resource 1Percent of total transect area in different land-use categories in the two transects. The north transect had a total area of 96 km2 and the south transect a total area of 98 km2. These land-use categories were merged to form the three land-use classes, forest, residential and other-developed, used in this study. (DOCX 12.9 kb)
11252_2013_291_MOESM2_ESM.docx (13 kb)
Online resource 2Percent foliar biomass for each species or species-category in the three urban classes. The species- or category-specific foliar biomass was estimated as percent of the total plot foliar biomass. (DOCX 12 kb)

References

  1. Aber JD, Goodale CL, Ollinger SV, Smith ML, Magill AH, Martin ME, Hallett RA, Stoddard JL (2003) Is nitrogen deposition altering the nitrogen status of northeastern forests? Bioscience 53(4):375–389CrossRefGoogle Scholar
  2. Alfani A, Baldantoni D, Maisto G, Bartoli G, Virzo De Santo A (2000) Temporal and spatial variation in C, N, S and trace element contents in the leaves of Quercus ilex within the urban area of Naples. Environ Pollut 109(1):119–129PubMedCrossRefGoogle Scholar
  3. Asner GP, Jones MO, Martin RE, Knapp DE, Hughes RF (2008) Remote sensing of native and invasive species in Hawaiian forests. Remote Sens Environ 112(5):1912–1926CrossRefGoogle Scholar
  4. Berland A (2012) Long-term urbanization effects on tree canopy cover along an urban-rural gradient. Urban Ecosystems 1–18Google Scholar
  5. Bettez N (2009) Impacts of chronic low level nitrogen deposition along a roadside deposition gradient on forest and estuarine N loading. Ph.D. Dissertation, Cornell University, 93 ppGoogle Scholar
  6. Blair RB (1996) Land use and avian species diversity along an urban gradient. Ecol Appl 6(2):506–519CrossRefGoogle Scholar
  7. Boggs JL, McNulty SG, Gavazzi MJ, Myers JM (2005) Tree growth, foliar chemistry, and nitrogen cycling across a nitrogen deposition gradient in southern Appalachian deciduous forests. Can J For Res-Rev Can Rech For 35(8):1901–1913CrossRefGoogle Scholar
  8. Cadenasso ML, Pickett STA, Schwarz K (2007) Spatial heterogeneity in urban ecosystems: Reconceptualizing land cover and a framework for classification. Front Ecol Environ 5(2):80–88CrossRefGoogle Scholar
  9. Curran PJ (2001) Imaging spectrometry for ecological applications. International Journal of Applied Earth Observation and Geoinformation 3(4):305–312CrossRefGoogle Scholar
  10. Efron B, Tibshirani R (1993) An introduction to the bootstrap. Monographs on Statistics and Applied Probability 57Google Scholar
  11. Energy Information Administration (2008) Emissions of greenhouse gases in the United States. US Department of Energy, Washington, DCGoogle Scholar
  12. Elvidge CD, Tuttle BT, Sutton PS, Baugh KE, Howard AT, Milesi C, Bhaduri BL, Nemani R (2007) Global distribution and density of constructed impervious surfaces. Sensors 7(9):1962–1979CrossRefGoogle Scholar
  13. Fang YT, Yoh M, Koba K, Zhu WX, Takebayashi Y, Xiao YH, Lei CY, Mo JM, Zhang W, Lu XK (2011) Nitrogen deposition and forest nitrogen cycling along an urban-rural transect in southern China. Glob Chang Biol 17(2):872–885CrossRefGoogle Scholar
  14. Finzi AC, Van Breemen N, Canham CD (1998) Canopy tree soil interactions within temperate forests: Species effects on soil carbon and nitrogen. Ecol Appl 8(2):440–446Google Scholar
  15. Finzi A (2009) Decades of atmospheric deposition have not resulted in widespread phosphorus limitation or saturation of tree demand for nitrogen in southern New England. Biogeochemistry 92(3):217–229CrossRefGoogle Scholar
  16. Forest Inventory and Analysis (2005) http://fia.fs.fed.us/. Accessed 12 October 2011.
  17. Foster DR (1992) Land-use history (1730–1990) and vegetation dynamics in central New England, USA. Journal of Ecology 753–771Google Scholar
  18. Foster DR, Aber JD, Cogbill CV (2010) Wildlands and woodlands: A vision for the New England landscape. Harvard University, Harvard ForestGoogle Scholar
  19. Gao F, Masek J, Schwaller M, Hall F (2006) On the blending of the Landsat and MODIS surface reflectance: Predicting daily Landsat surface reflectance. Geoscience and Remote Sensing, IEEE Transactions on 44(8):2207–2218CrossRefGoogle Scholar
  20. George K, Ziska LH, Bunce JA, Quebedeaux B (2007) Elevated atmospheric CO2 concentration and temperature across an urban-rural transect. Atmospheric Environment 41(35):7654–7665CrossRefGoogle Scholar
  21. Golubiewski NE (2006) Urbanization increases grassland carbon pools: Effects of landscaping in Colorado’s front range. Ecol Appl 16(2):555–571PubMedCrossRefGoogle Scholar
  22. Gregg JW, Jones CG, Dawson TE (2003) Urbanization effects on tree growth in the vicinity of New York City. Nature 424(6945):183–187PubMedCrossRefGoogle Scholar
  23. Grimm NB, Foster D, Groffman P, Grove JM, Hopkinson CS, Nadelhoffer KJ, Pataki DE, Peters DPC (2008) The changing landscape: Ecosystem responses to urbanization and pollution across climatic and societal gradients. Front Ecol Environ 6(5):264–272CrossRefGoogle Scholar
  24. Hahs AK, McDonnell MJ (2006) Selecting independent measures to quantify Melbourne’s urban-rural gradient. Landscape and Urban Planning 78(4):435–448CrossRefGoogle Scholar
  25. Hall B, Motzkin G, Foster DR, Syfert M, Burk J (2002) Three hundred years of forest and land-use change in Massachusetts, USA. J Biogeogr 29(10–11):1319–1335CrossRefGoogle Scholar
  26. Harris W, Goldstein R, Henderson G (1973) Analysis of forest biomass pools, annual primary production and turnover of biomass for a mixed deciduous forest watershed. In: Young H (ed) IUFRO biomass studies, Nancy, France and Vancouver, BC. University of Maine, College of Life Sciences and Agriculture, Orono, ME, pp 41–64Google Scholar
  27. Hollinger DY, Ollinger SV, Richardson AD, Meyers TP, Dail DB, Martin ME, Scott NA, Arkebauer TJ, Baldocchi DD, Clark KL, Curtis PS, Davis KJ, Desai AR, Dragoni D, Goulden ML, Gu L, Katul GG, Pallardy SG, Paw UKT, Schmid HP, Stoy PC, Suyker AE, Verma SB (2009) Albedo estimates for land surface models and support for a new paradigm based on foliage nitrogen concentration. Glob Chang Biol 16(2):696–710CrossRefGoogle Scholar
  28. Hutyra LR, Yoon B, Hepinstall-Cymerman J, Alberti M (2011a) Carbon consequences of land cover change and expansion of urban lands: A case study in the Seattle metropolitan region. Landscape and Urban Planning 103(1):83–93CrossRefGoogle Scholar
  29. Hutyra LR, Yoon B, Alberti M (2011b) Terrestrial carbon stocks across a gradient of urbanization: a study of the Seattle, WA region. Glob Chang Biol 17(2):783–797CrossRefGoogle Scholar
  30. Idso CD, Idso SB, Balling RC (2001) An intensive two-week study of an urban CO2 dome in Phoenix, Arizona, USA. Atmospheric Environment 35:995–1000CrossRefGoogle Scholar
  31. Imhoff ML, Bounoua L, DeFries R, Lawrence WT, Stutzer D, Tucker CJ, Ricketts T (2004) The consequences of urban land transformation on net primary productivity in the United States. Remote Sens Environ 89(4):434–443CrossRefGoogle Scholar
  32. Jenkins JC, United States. Forest Service. Northeastern Research S (2004) Comprehensive database of diameter-based biomass regressions for North American tree species. United States Department of Agriculture, Forest Service, Northeastern Research StationGoogle Scholar
  33. Jim CY (1998) Physical and chemical properties of a Hong Kong roadside soil in relation to urban tree growth. Urban Ecosystems 2(2):171–181CrossRefGoogle Scholar
  34. Kaushal S, Belt K (2012) The urban watershed continuum: Evolving spatial and temporal dimensions. Urban Ecosystems 15(2):409–435CrossRefGoogle Scholar
  35. Kaye JP, McCulley RL, Burke IC (2005) Carbon fluxes, nitrogen cycling, and soil microbial communities in adjacent urban, native and agricultural ecosystems. Glob Chang Biol 11(4):575–587CrossRefGoogle Scholar
  36. Kaye JP, Groffman PM, Grimm NB, Baker LA, Pouyat RV (2006) A distinct urban biogeochemistry? Trends Ecol Evol 21(4):192–199PubMedCrossRefGoogle Scholar
  37. Kennedy C, Pincetl S, Bunje P (2011) The study of urban metabolism and its applications to urban planning and design. Environ Pollut 159:1965–1973PubMedCrossRefGoogle Scholar
  38. Kokaly RF, Clark RN (1999) Spectroscopic determination of leaf biochemistry using band-depth analysis of absorption features and stepwise multiple linear regression. Remote Sens Environ 67(3):267–287CrossRefGoogle Scholar
  39. Langford M (2007) Rapid facilitation of dasymetric-based population interpolation by means of raster pixel maps. Computers, Environment and Urban Systems 31(1):19–32CrossRefGoogle Scholar
  40. Law N, Band L, Grove M (2004) Nitrogen input from residential lawn care practices in suburban watersheds in Baltimore County, MD. J Environ Plan Manag 47(5):737–755CrossRefGoogle Scholar
  41. Lorenz K, Lal R (2009) Biogeochemical C and N cycles in urban soils. Environ Int 35(1):1–8PubMedCrossRefGoogle Scholar
  42. Lovett GM, Traynor MM, Pouyat RV, Carreiro MM, Zhu W-X, Baxter JW (2000) Atmospheric deposition to Oak forests along an urban-rural gradient. Environ Sci Technol 34(20):4294–4300CrossRefGoogle Scholar
  43. Lovett GM, Weathers KC, Arthur MA (2002) Control of nitrogen loss from forested watersheds by soil carbon: Nitrogen ratio and tree species composition. Ecosystems 5(7):712–718CrossRefGoogle Scholar
  44. Luck M, Wu J (2002) A gradient analysis of urban landscape pattern: A case study from the phoenix metropolitan region, Arizona, USA. Landsc Ecol 17(4):327–339CrossRefGoogle Scholar
  45. Martin ME, Newman SD, Aber JD, Congalton RG (1998) Determining forest species composition using high spectral resolution remote sensing data. Remote Sens Environ 65(3):249–254CrossRefGoogle Scholar
  46. Martin ME, Plourde LC, Ollinger SV, Smith ML, McNeil BE (2008) A generalizable method for remote sensing of canopy nitrogen across a wide range of forest ecosystems. Remote Sens Environ 112(9):3511–3519CrossRefGoogle Scholar
  47. Masek JG, Vermote EF, Saleous NE, Wolfe R, Hall FG, Huemmrich KF, Gao F, Kutler J, Lim TK (2006) A Landsat surface reflectance dataset for North America, 1990–2000. Geoscience and Remote Sensing Letters, IEEE 3(1):68–72CrossRefGoogle Scholar
  48. Massachusetts Office of Geographic Information, MassGIS (2009) Land Use (2005) data layer. http://www.mass.gov/mgis/lus2005.htm Accessed 2 May 2011.
  49. Matson P, Johnson L, Billow C, Miller J, Pu R (1994) Seasonal patterns and remote spectral estimation of canopy chemistry across the Oregon transect. Ecological Applications 280–298Google Scholar
  50. McDonnell MJ, Pickett STA (1990) Ecosystem structure and function along urban-rural gradients: An unexploited opportunity for ecology. Ecology 71(4):1232–1237CrossRefGoogle Scholar
  51. McDonnell MJ, Pickett STA, Groffman P, Bohlen P, Pouyat RV, Zipperer WC, Parmelee RW, Carreiro MM, Medley K (1997) Ecosystem processes along an urban-to-rural gradient. Urban Ecosystems 1(1):21–36CrossRefGoogle Scholar
  52. McDonnell M, Hahs A (2008) The use of gradient analysis studies in advancing our understanding of the ecology of urbanizing landscapes: Current status and future directions. Landsc Ecol 23(10):1143–1155CrossRefGoogle Scholar
  53. McIntyre NE, Knowles-Yanez K, Hope D (2000) Urban ecology as an interdisciplinary field: Differences in the use of “urban” between the social and natural sciences. Urban Ecosystems 4(1):5–24CrossRefGoogle Scholar
  54. McNulty SG, Aber JD, Boone RD (1991) Spatial changes in forest floor and foliar chemistry of spruce-Fir forests across New-England. Biogeochemistry 14(1):13–29CrossRefGoogle Scholar
  55. Milesi C, Elvidge CD, Nemani RR, Running SW (2003) Assessing the impact of urban land development on net primary productivity in the southeastern United States. Remote Sens Environ 86(3):401–410CrossRefGoogle Scholar
  56. Milesi C, Running SW, Elvidge CD, Dietz JB, Tuttle BT, Nemani RR (2005) Mapping and modeling the biogeochemical cycling of turf grasses in the United States. Environ Manag 36(3):426–438CrossRefGoogle Scholar
  57. National Climatic Data Center (2011) US National Oceanic and Atmospheric Administration (2009) Online Climate Data Directory. http://lwf.ncdc.noaa.gov/oa/climate/climatedata.html.
  58. Nihlgard B (1985) The ammonium hypothesis: an additional explanation to the forest dieback in Europe. Ambio 2–8Google Scholar
  59. Nikula S, Vapaavuori E, Manninen S (2010) Urbanization-related changes in European aspen (Populus tremula L.): Leaf traits and litter decomposition. Environ Pollut 158(6):2132–2142PubMedCrossRefGoogle Scholar
  60. Nixon SW, Fulweiler RW (2011) Ecological footprints and shadows in an urban estuary, Narragansett Bay, RI (USA). Regional Environmental Change 1–14Google Scholar
  61. Nowak DJ, Crane DE (2002) Carbon storage and sequestration by urban trees in the USA. Environ Pollut 116(3):381–389PubMedCrossRefGoogle Scholar
  62. Ollinger SV, Smith ML (2005) Net primary production and canopy nitrogen in a temperate forest landscape: An analysis using imaging spectroscopy, modeling and field data. Ecosystems 8(7):760–778CrossRefGoogle Scholar
  63. Ollinger SV, Richardson AD, Martin ME, Hollinger DY, Frolking SE, Reich PB, Plourde LC, Katul GG, Munger JW, Oren R, Smith ML, Paw UKT, Bolstad PV, Cook BD, Day MC, Martin TA, Monson RK, Schmid HP (2008) Canopy nitrogen, carbon assimilation, and albedo in temperate and boreal forests: Functional relations and potential climate feedbacks. Proc Natl Acad Sci 105(49):19336–19341. doi:10.1073/pnas.0810021105 PubMedCrossRefGoogle Scholar
  64. O’Neil-Dunne JPM, MacFaden SW, Royar AR, Pelletier KC (2012) An object-based system for LiDAR data fusion and feature extraction. Geocarto International 1–16Google Scholar
  65. Pataki DE, Alig RJ, Fung AS, Golubiewski NE, Kennedy CA, McPherson EG, Nowak DJ, Pouyat RV, Lankao PR (2006) Urban ecosystems and the North American carbon cycle. Glob Chang Biol 12(11):2092–2102CrossRefGoogle Scholar
  66. Pataki DE, Emmi PC, Forster CB, Mills JI, Pardyjak ER, Peterson TR, Thompson JD, Dudley-Murphy E (2009) An integrated approach to improving fossil fuel emissions scenarios with urban ecosystem studies. Ecol Complex 6(1):1–14CrossRefGoogle Scholar
  67. Piao SL, Ciais P, Friedlingstein P, Peylin P, Reichstein M, Luyssaert S, Margolis H, Fang JY, Barr A, Chen AP, Grelle A, Hollinger DY, Laurila T, Lindroth A, Richardson AD, Vesala T (2008) Net carbon dioxide losses of northern ecosystems in response to autumn warming. Nature 451(7174):49–U43PubMedCrossRefGoogle Scholar
  68. Pickett STA, Cadenasso ML, Grove JM, Groffman PM, Band LE, Boone CG, Burch WR, Grimmond CSB, Hom J, Jenkins JC, Law NL, Nilon CH, Pouyat RV, Szlavecz K, Warren PS, Wilson MA (2008) Beyond urban legends: An emerging framework of urban ecology, as illustrated by the Baltimore ecosystem study. Bioscience 58(2):139–150CrossRefGoogle Scholar
  69. Pickett STA, Cadenasso ML, Grove JM, Boone CG, Groffman PM, Irwin E, Kaushal SS, Marshall V, McGrath BP, Nilon CH (2011) Urban ecological systems: Scientific foundations and a decade of progress. J Environ Manage 92(3):331–362PubMedCrossRefGoogle Scholar
  70. Population Division of the Department of Economic and Social Affairs of the United Nations Secretariat (2012) World Urbanization Prospects: The 2011 Revision. New York: United NationsGoogle Scholar
  71. Post WM, Emanuel WR, Zinke PJ, Stangenberger AG (1982) Soil carbon pools and world life zones. Nature 298(5870):156–159CrossRefGoogle Scholar
  72. Potter C, Klooster S, Huete A, Genovese V (2007) Terrestrial carbon sinks for the United States predicted from MODIS satellite data and ecosystem modeling. Earth Interactions 11(13):1–21CrossRefGoogle Scholar
  73. Pouyat RV, Carreiro MM, Mcdonnell MJ, Pickett STA, Groffman PM, Parmelee RW, Medley KE, Zipperer WC (1995) Carbon and Nitrogen Dynamics in Oak Stands Along an Urban-Rural Gradient. Carbon Forms and Functions in Forest Soils 569–587Google Scholar
  74. Pouyat R, Groffman P, Yesilonis I, Hernandez L (2002) Soil carbon pools and fluxes in urban ecosystems. Environ Pollut 116:S107–S118PubMedCrossRefGoogle Scholar
  75. Pouyat RV, Yesilonis ID, Nowak DJ (2006) Carbon storage by urban soils in the United States. J Environ Qual 35(4):1566–1575. doi:10.2134/jeq2005.0215 PubMedCrossRefGoogle Scholar
  76. Pouyat RV, Yesilonis ID, Golubiewski NE (2009) A comparison of soil organic carbon stocks between residential turf grass and native soil. Urban Ecosystems 12(1):45–62CrossRefGoogle Scholar
  77. Raciti SM, Groffman PM, Jenkins JC, Pouyat RV, Fahey TJ, Pickett STA, Cadenasso ML (2011a) Accumulation of carbon and nitrogen in residential soils with different land-use histories. Ecosystems 14(2):287–297CrossRefGoogle Scholar
  78. Raciti SM, Burgin AJ, Man PMG, Lewis DN, Fahey TJ (2011b) Denitrification in suburban lawn soils. J Environ Qual 40(6):1932–1940PubMedCrossRefGoogle Scholar
  79. Raciti SM, Hutyra LR, Rao P, Finzi AC (2012a) Inconsistent definitions of “urban” result in different conclusions about the size of urban carbon and nitrogen stocks. Ecol Appl 22(3):1015–1035PubMedCrossRefGoogle Scholar
  80. Raciti SM, Hutyra LR, Finzi AC (2012b) Depleted soil carbon and nitrogen pools beneath impervious surfaces. Environ Pollut 164:248–251PubMedCrossRefGoogle Scholar
  81. Rees WE (1992) Ecological footprints and appropriated carrying capacity: What urban economics leaves out. Environ Urban 4(2):121–130CrossRefGoogle Scholar
  82. Reich PB, Turner DP, Bolstad P (1999) An approach to spatially distributed modeling of net primary production (NPP) at the landscape scale and its application in validation of EOS NPP products. Remote Sens Environ 70(1):69–81CrossRefGoogle Scholar
  83. Rogan J, Bumbarger N, Kulakowski D, Christman ZJ, Runfola DM, Blanchard SD (2010) Improving forest type discrimination with mixed lifeform classes using fuzzy classification thresholds informed by field observations. Can J Remote Sens 36(6):699–708CrossRefGoogle Scholar
  84. Running SW, Nemani RR, Heinsch FA, Zhao M, Reeves M, Hashimoto H (2004) A continuous satellite-derived measure of global terrestrial primary production. BioScience 54(6):547–560CrossRefGoogle Scholar
  85. Scalenghe R, Marsan FA (2009) The anthropogenic sealing of soils in urban areas. Landscape and Urban Planning 90(1–2):1–10CrossRefGoogle Scholar
  86. Schimel DS, Emanuel W, Rizzo B, Smith T, Woodward FI, Fisher H, Kittel TGF, McKeown R, Painter T, Rosenbloom N, Ojima DS, Parton WJ, Kicklighter DW, McGuire AD, Melillo JM, Pan Y, Haxeltine A, Prentice C, Sitch S, Hibbard K, Nemani R, Pierce L, Running S, Borchers J, Chaney J, Neilson R, Braswell BH (1997) Continental scale variability in ecosystem processes: Models, data, and the role of disturbance. Ecol Monogr 67(2):251–271CrossRefGoogle Scholar
  87. Seto KC, Fragkias M, Guneralp B, Reilly MK (2011) A meta-analysis of global urban land expansion. PLoS One 6(8):e23777PubMedCrossRefGoogle Scholar
  88. Smith ML, Ollinger SV, Martin ME, Aber JD, Hallett RA, Goodale CL (2002) Direct estimation of aboveground forest productivity through hyperspectral remote sensing of canopy nitrogen. Ecol Appl 12(5):1286–1302CrossRefGoogle Scholar
  89. Sollins P, Reichle DE, Olson JS (1973) Organic matter budget and model for a southern Appalachian Liriodendron forest. Publ. EDFBIBP-73-2. Oak Ridge National Laboratory, Oak Ridge, TNGoogle Scholar
  90. Stewart ID (2007) Landscape representation and the urban-rural dichotomy in empirical urban heat island literature, 1950–2006. Acta Climatologica et Chorologica Universitatis Szegediensis, Tomus 40–41Google Scholar
  91. Templer PH, McCann TM (2010) Effects of the hemlock woolly adelgid on nitrogen losses from urban and rural northern forest ecosystems. Ecosystems 13(8):1215–1226CrossRefGoogle Scholar
  92. Ter-Mikaelian MT, Korzukhin MD (1997) Biomass equations for sixty-five North American tree species. For Ecol Manag 97(1):1–24CrossRefGoogle Scholar
  93. Tritton LM, Hornbeck JW (1982) Northeastern Forest Experiment S Biomass equations for major tree species of the Northeast. US Dept. of Agriculture, Forest Service, Northeastern Forest Experiment StationGoogle Scholar
  94. U.S. Census Bureau (2010) www.census.gov. Accessed 2 October 2011
  95. USDA Natural Resources Conservation Service (2009). Soil Survey of Middlesex County, Massachusetts.Google Scholar
  96. Wessman CA, Aber JD, Peterson DL, Melillo JM (1988) Remote-sensing of canopy chemistry and nitrogen cycling in temperate forest ecosystems. Nature 335(6186):154–156CrossRefGoogle Scholar
  97. White C, McDonnell M (1988) Nitrogen cycling processes and soil characteristics in an urban versus rural forest. Biogeochemistry 5(2):243–262CrossRefGoogle Scholar
  98. Woodcock CE, Strahler AH (1987) The factor of scale in remote-sensing. Remote Sens Environ 21(3):311–332CrossRefGoogle Scholar
  99. Zhang XY, Friedl MA, Schaaf CB, Strahler AH, Schneider A (2004a) The footprint of urban climates on vegetation phenology. Geophys Res Lett 31(12)Google Scholar
  100. Zhang L, Wu J, Zhen Y, Shu J (2004b) A GIS-based gradient analysis of urban landscape pattern of Shanghai metropolitan area, China. Landscape and Urban Planning 69(1):1–16CrossRefGoogle Scholar
  101. Zhu W-X, Carreiro MM (2004) Temporal and spatial variations in nitrogen transformations in deciduous forest ecosystems along an urban-rural gradient. Soil Biol Biochem 36(2):267–278CrossRefGoogle Scholar
  102. Zhu Z, Woodcock CE (2012) Object-based cloud and cloud shadow detection in Landsat imagery. Remote Sens Environ 118:83–94CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Preeti Rao
    • 1
  • Lucy R. Hutyra
    • 1
  • Steve M. Raciti
    • 1
  • Adrien C. Finzi
    • 2
  1. 1.Department of Earth & EnvironmentBoston UniversityBostonUSA
  2. 2.Department of BiologyBoston UniversityBostonUSA

Personalised recommendations