Skip to main content

Impact of urban structure on avian diversity along the Truckee River, USA

Abstract

Urban riparian habitats are potentially important resources for native birds in arid ecosystems. Most studies have assessed the value of urban riparian habitat in terms of vegetation and natural resources; however, the surrounding land use and infrastructure may determine the viability of urban habitat. We studied the impact of urban structure, the combination of land use, infrastructure and vegetation variables that work together to shape the urban environment, on avian riparian habitat in the Truckee Meadows, Nevada, USA. Land use and infrastructure explained avian species richness and abundance better than local vegetation alone, but community resemblance was more strongly correlated to vegetation. Avian species guilds responded differentially to surrounding land use, suggesting there may be a functional difference between land use types. The best models for bird diversity used urban structure (both land use and vegetation) to describe potential habitat. Urban structure describes urban habitat in ways that vegetation variables alone cannot. Studies that ignore land use and infrastructure and other socioeconomic variables are likely missing key functional differences within urban ecosystems, and may miss the potential for compatible development that encourages both biodiversity and urban growth.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Alberti M (2005) The effects of urban patterns on ecosystem function. Int Reg Sci Rev 28(2):168–192. doi:10.1177/0160017605275160

    Article  Google Scholar 

  2. Alberti M (2010) Maintaining ecological integrity and sustaining ecosystem function in urban areas. Curr Opin Environ Sustain 2(3):178–184. doi:10.1016/j.cosust.2010.07.002

    Article  Google Scholar 

  3. Anderson JR, Hardy EE, Roach JT, Witmer RE (1976) A land use and land cover classification system for use with remote sensor data. Geological Survey Profession Paper 964.

  4. Arizmendi MDC, Dávila P, Estrada A, Figueroa E, Márquez-Valdelamar L, Lira R, Oliveros-Galindo O, Valiente-Banuet A (2008) Riparian Mesquite bushes are important for bird conservation in tropical arid Mexico. J Arid Environ 72(7):1146–1163. doi:10.1016/j.jaridenv.2007.12.017

    Article  Google Scholar 

  5. Bark RH, Osgood DE, Colby BG, Katz G, Stromberg J (2009) Habitat preservation and restoration: do homebuyers have preferences for quality habitat? Ecol Econ 68(5):1465–1475. doi:10.1016/j.ecolecon.2008.10.005

    Article  Google Scholar 

  6. Bino G, Levin N, Darawshi S, Van Der Hal N, Reich-Solomon A, Kark S (2008) Accurate prediction of bird species richness patterns in an urban environment using Landsat-derived NDVI and spectral unmixing. Int J Remote Sens 29(13):3675–3700. doi:10.1080/01431160701772534

    Article  Google Scholar 

  7. Blair RB (1996) Land use and avian species diversity along an urban gradient. Ecol Appl 6(2):506–519

    Article  Google Scholar 

  8. Blair R (2004) The effects of urban sprawl on birds at multiple levels of biological organization. Ecol Soc 9(5)

  9. Blair RB, Johnson EM (2008) Suburban habitats and their role for birds in the urban-rural habitat network: points of local invasion and extinction? Landsc Ecol 23(10):1157–1169. doi:10.1007/s10980-008-9267-y

    Article  Google Scholar 

  10. Borgmann KL, Rodewald AD (2004) Nest predation in an urbanizing landscape: The role of exotic shrubs. Ecol Appl 14(6):1757–1765

    Article  Google Scholar 

  11. Breiman L (2001) Random forests. Mach Learn 45(1):5–32

    Article  Google Scholar 

  12. Buyantuyev A, Wu J (2009) Urbanization alters spatiotemporal patterns of ecosystem primary production: A case study of the Phoenix metropolitan region, USA. J Arid Environ 73(4–5):512–520. doi:10.1016/j.jaridenv.2008.12.015

    Article  Google Scholar 

  13. Cadenasso ML, Pickett STA, Schwarz K (2007) Spatial heterogeneity in urban ecosystems: reconceptualizing land cover and a framework for classification. Front Ecol Environ 5(2):80–88

    Article  Google Scholar 

  14. Cutler DR, Edwards TC, Beard KH, Cutler A, Hess KT (2007) Random forests for classification in ecology. Ecology 88(11):2783–2792

    PubMed  Article  Google Scholar 

  15. De’ath G, Fabricius KE (2000) Classification and regression trees: a powerful yet simple technique for ecological data analysis. Ecology 81(11):3178–3192. doi:10.1890/0012-9658

    Article  Google Scholar 

  16. Donnelly R, Marzluff JM (2004) Importance of reserve size and landscape context to urban bird conservation. Conserv Biol 18(3):733–745

    Article  Google Scholar 

  17. Dow K (2000) Social dimensions of gradients in urban ecosystem. Urban Ecosystems 4:255–275

    Article  Google Scholar 

  18. Emlen JT (1974) Urban bird community in Tucson, Arizona - derivation, structure, regulation. Condor 76(2):184–197

    Article  Google Scholar 

  19. Evans JS, Cushman SA (2009) Gradient modeling of conifer species using random forests. Landsc Ecol 24(5):673–683. doi:10.1007/s10980-009-9341-0

    Article  Google Scholar 

  20. Francis CD, Ortega CP, Cruz A (2009) Noise pollution changes avian communities and species interactions. Curr Biol 19(16):1415–1419. doi:10.1016/j.cub.2009.06.052

    PubMed  Article  CAS  Google Scholar 

  21. Garaffa PI, Filloy J, Bellocq MI (2009) Bird community responses along urban-rural gradients: does the size of the urbanized area matter? Landsc Urban Plann 90(1–2):33–41. doi:10.1016/j.landurbplan.2008.10.004

    Article  Google Scholar 

  22. Germaine SS, Rosenstock SS, Schweinsburg RE, Richardson WS (1998) Relationships among breeding birds, habitat, and residential development in Greater Tucson, Arizona. Ecol Appl 8(3):680–691

    Article  Google Scholar 

  23. Green DA, Baker MG (2003) Urbanization impacts on habitat and bird communities in a Sonoran desert ecosystem. Landsc Urban Plann 63(4):225–239

    Article  Google Scholar 

  24. Grimm NB, Grove JM, Pickett STA, Redman CL (2000) Integrated approaches to long-term studies of urban ecological systems. Bioscience 50(7):571–584

    Article  Google Scholar 

  25. Grove JM, Cadenasso M, Burch W, Pickett S, Schwarz K, O’Neil-Dunne J, Wilson M, Troy A, Boone C (2006) Data and methods comparing social structure and vegetation structure of urban neighborhoods in Baltimore, Maryland. Soc Nat Resour 19(2):117–136. doi:10.1080/08941920500394501

    Article  Google Scholar 

  26. Hardcastle J (2010) Nevada County Population Estimates July 1, 1986 to July 1, 2009:Includes Cities and Towns. http://www.nsbdc.org/what/data_statistics/demographer/pubs/docs/Nevada_2009_Pop_Estimates_030910.pdf.

  27. Hedblom M, Soderstrom B (2010) Landscape effects on birds in urban woodlands: an analysis of 34 Swedish cities. J Biogeogr 1302–1316. doi:10.1111/j.1365-2699.2010.02299.x

  28. Hennings LA, Edge WD (2003) Riparian bird community structure in Portland, Oregon: Habitat, urbanization, and spatial scale patterns. Condor 105(2):288–302

    Article  Google Scholar 

  29. Hepinstall JA, Alberti M, Marzluff JM (2008) Predicting land cover change and avian community responses in rapidly urbanizing environments. Landsc Ecol 23(10):1257–1276. doi:10.1007/s10980-008-9296-6

    Article  Google Scholar 

  30. Hodgson P, French K, Major R (2007) Avian movement across abrupt ecological edges: Differential responses to housing density in an urban matrix. Landsc Urban Plann 79(3–4):266–272. doi:10.1016/j.landurbplan.2006.02.012

    Article  Google Scholar 

  31. Hostetler M, Knowles-Yanez K (2003) Land use, scale, and bird distributions in the Phoenix metropolitan area. Landsc Urban Plann 62(2):55–68

    Article  Google Scholar 

  32. Hostetler M, Allen W, Meurk C (2011) Conserving urban biodiversity? Creating green infrastructure is only the first step. Landsc Urban Plann 100:369–371. doi:10.1016/j.landurbplan.2011.01.011

    Article  Google Scholar 

  33. Jim CY (2011) Holistic research agenda for sustainable management and conservation of urban woodlands. Landsc Urban Plann 100:375–379. doi:10.1016/j.landurbplan.2011.01.006

    Article  Google Scholar 

  34. Jokimäki J, Kaisanlahti-Jokimäki M-L, Suhonen J, Clergeau P, Pautasso M, Fernández-Juricic E (2011) Merging wildlife community ecology with animal behavioral ecology for a better urban landscape planning. Landsc Urban Plann 100:383–385. doi:10.1016/j.landurbplan.2011.02.001

    Article  Google Scholar 

  35. Kadlec T, Benes J, Jarosik V, Konvicka M (2008) Revisiting urban refuges: changes of butterfly and burnet fauna in Prague reserves over three decades. Landsc Urban Plann 85(1):1–11. doi:10.1016/j.landurbplan.2007.07.007

    Article  Google Scholar 

  36. Katti M, Warren PS (2004) Tits, noise and urban bioacoustics. Trends Ecol Evol 19(3):109–110. doi:10.1016/j.tree.2003.12.006

    PubMed  Article  Google Scholar 

  37. Kinzig AP, Warren P, Martin C, Hope D, Katti M (2005) The effects of human socioeconomic status and cultural characteristics on urban patterns of biodiversity. Ecol Soc 10(1):doi:23

    Google Scholar 

  38. Klem D, Farmer CJ, Delacretaz N, Gelb Y, Saenger PG (2009) Architectural and landscape risk factors associated with bird-glass collisions in an urban environment. Wilson Journal of Ornithology 121(1):126–134

    Article  Google Scholar 

  39. Knopf FL, Johnson RR, Rich T, Samson FB, Szaro RC (1988) Conservation of riparian ecosystems in the United States. Wilson Bull 100(2):272–284

    Google Scholar 

  40. Krebs CJ (1999) Ecological methodology. Benjamin Cummings, San Francisco

    Google Scholar 

  41. Legendre P, Fortin MJ (1989) Spatial pattern and ecological analysis. Vegetatio 80(2):107–138

    Article  Google Scholar 

  42. Lenth BA, Knight RL, Gilgert WC (2006) Conservation value of clustered housing developments. Conserv Biol 20(5):1445–1456

    PubMed  Article  Google Scholar 

  43. Leston LFV, Rodewald AD (2006) Are urban forests ecological traps for understory birds? An examination using Northern cardinals. Biol Conserv 131(4):566–574. doi:10.1016/j.biocon.2006.03.003

    Article  Google Scholar 

  44. Livingston M, Shaw WW, Harris LK (2003) A model for assessing wildlife habitats in urban landscapes-of eastern Pima County, Arizona (USA). Landsc Urban Plann 64(3):131–144

    Article  Google Scholar 

  45. Long AJ, Nair PKR (1999) Trees outside forests: agro-, community, and urban forestry. New Forests 17(1–3):145–174

    Article  Google Scholar 

  46. Loss SR, Ruiz MO, Brawn JD (2009) Relationships between avian diversity, neighborhood age, income, and environmental characteristics of an urban landscape. Biol Conserv 142(11):2578–2585. doi:10.1016/j.biocon.2009.06.004

    Article  Google Scholar 

  47. Luther D, Hilty J, Weiss J, Cornwall C, Wipf M, Ballard G (2008) Assessing the impact of local habitat variables and landscape context on riparian birds in agricultural, urbanized, and native landscapes. Biodivers Conserv 17(8):1923–1935. doi:10.1007/s10531-008-9332-5

    Article  Google Scholar 

  48. Lynn S, Morrison ML, Kuenzi AJ, Neale JCC, Sacks BN, Hamlin R, Hall LS (1998) Bird use of riparian vegetation along the Truckee River, California and Nevada. Great Basin Naturalist 58(4):328–343

    Google Scholar 

  49. Martin CA, Warren PS, Kinzig AP (2004) Neighborhood socioeconomic status is a useful predictor of perennial landscape vegetation in residential neighborhoods and embedded small parks of Phoenix, AZ. Landsc Urban Plann 69(4):355–368. doi:10.1016/j.landurbplan.2003.10.034

    Article  Google Scholar 

  50. Martin T, McIntyre S, Catterall C, Possingham H (2006) Is landscape context important for riparian conservation? Birds in grassy woodland. Biol Conserv 127(2):201–214. doi:10.1016/j.biocon.2005.08.014

    Article  Google Scholar 

  51. Mason J, Moorman C, Hess G, Sinclair K (2007) Designing suburban greenways to provide habitat for forest-breeding birds. Landsc Urban Plann 80(1–2):153–164. doi:10.1016/j.landurbplan.2006.07.002

    Article  Google Scholar 

  52. McCune B, Grace JB (2002) Analysis of ecological communities. MjM Software Design, Gleneden Beach

    Google Scholar 

  53. McIntyre NE, Knowles-Yanez K (2000) Urban ecology as an interdisciplinary field: differences in the use of “urban” between the social and natural sciences. Urban Ecosystems 4:5–24

    Article  Google Scholar 

  54. Mennis J (2006) Socioeconomic-vegetation relationships in urban, residential land: The case of Denver, Colorado. Photogramm Eng Remote Sens 72(8):911–921

    Google Scholar 

  55. Merenlender AM, Reed SE, Heise KL (2009) Exurban development influences woodland bird composition. Landsc Urban Plann 92(3–4):255–263. doi:10.1016/j.landurbplan.2009.05.004

    Article  Google Scholar 

  56. Miller JR, Hobbs NT (2000) Recreational trails, human activity, and nest predation in lowland riparian areas. Landsc Urban Plann 50(4):227–236

    Article  Google Scholar 

  57. Mitchell TM (1997) Machine learning. McGraw-Hill series in computer science, McGraw-Hill

    Google Scholar 

  58. Naiman RJ, Decamps H (1997) The ecology of interfaces: riparian zones. Annu Rev Ecol Evol Syst 28:621–658

    Article  Google Scholar 

  59. Oneal AS, Rotenberry JT (2009) Scale-dependent habitat relations of birds in riparian corridors in an urbanizing landscape. Landsc Urban Plann 92(3–4):264–275. doi:10.1016/j.landurbplan.2009.05.005

    Article  Google Scholar 

  60. Ortega-Alvarez R, MacGregor-Fors I (2009) Living in the big city: Effects of urban land-use on bird community structure, diversity, and composition. Landsc Urban Plann 90(3–4):189–195. doi:10.1016/j.landurbplan.2008.11.003

    Article  Google Scholar 

  61. Patten DT (1998) Riparian ecosystems of semi-arid North America: Diversity and human impacts. Wetlands 18(4):498–512

    Article  Google Scholar 

  62. Pautasso M, Weisberg PJ (2008) Negative density-area relationships: the importance of the zeros. Glob Ecol Biogeogr 17(2):203–210. doi:10.1111/j.1466-8238.2007.00354.x

    Article  Google Scholar 

  63. Pennington DN, Blair RB (2011) Habitat selection of breeding riparian birds in an urban environment: untangling the relative importance of biophysical elements and spatial scale. Divers Distrib 17(3):506–518. doi:10.1111/j.1472-4642.2011.00750.x

    Article  Google Scholar 

  64. Pennington DN, Hansel J, Blair RB (2008) The conservation value of urban riparian areas for landbirds during spring migration: Land cover, scale, and vegetation effects. Biol Conserv 141(5):1235–1248. doi:10.1016/j.biocon.2008.02.021

    Article  Google Scholar 

  65. Pickett STA, Cadenasso ML (2008) Linking ecological and built components of urban mosaics: an open cycle of ecological design. J Ecol 96(1):8–12. doi:10.1111/j.1365-2745.2007.01310.x

    Google Scholar 

  66. Reynolds RT, Scott JM, Nussbaum RA (1980) A variable circular-plot method for estimating bird numbers. Condor 82(3):309–313

    Article  Google Scholar 

  67. Rich T (2002) Using breeding land birds in the assessment of western riparian systems. Wildl Soc Bull 30:1128–1139

    Google Scholar 

  68. Ripley BD (1994) Neural networks and related methods for classification. J Roy Stat Soc B Met 56(3):409–437

    Google Scholar 

  69. Rodewald A, Bakermans M (2006) What is the appropriate paradigm for riparian forest conservation? Biol Conserv 128(2):193–200. doi:10.1016/j.biocon.2005.09.041

    Article  Google Scholar 

  70. Ryder TB, Reitsma R, Evans B, Marra PP (2010) Quantifying avian nest survival along an urbanization gradient using citizen- and scientist-generated data. Ecol Appl 20(2):419–426

    PubMed  Article  Google Scholar 

  71. Saab V (1999) Importance of spatial scale to habitat use by breeding birds in riparian forests: A hierarchical analysis. Ecol Appl 9(1):135–151

    Article  Google Scholar 

  72. Schneider NA, Griesser M (2009) Influence and value of different water regimes on avian species richness in arid inland Australia. Biodivers Conserv 18(2):457–471. doi:10.1007/s10531-008-9501-6

    Article  Google Scholar 

  73. Seymour CL, Simmons RE (2008) Can severely fragmented patches of riparian vegetation still be important for arid-land bird diversity? J Arid Environ 72(12):2275–2281. doi:10.1016/j.jaridenv.2008.07.014

    Article  Google Scholar 

  74. Shochat E, Warren P, Faeth S, McIntyre N, Hope D (2006) From patterns to emerging processes in mechanistic urban ecology. Trends Ecol Evol 21(4):186–191. doi:10.1016/j.tree.2005.11.019

    PubMed  Article  Google Scholar 

  75. Shustack DP, Rodewald AD, Waite TA (2008) Springtime in the city: exotic shrubs promote earlier greenup in urban forests. Biol Invasions 11(6):1357–1371. doi:10.1007/s10530-008-9343-x

    Article  Google Scholar 

  76. Smallbone LT, Luck GW, Wassens S (2011) Anuran species in urban landscapes: relationships with biophysical, built environment and socio-economic factors. Landsc Urban Plann 101:43–51. doi:10.1016/j.landurbplan.2011.01.002

    Article  Google Scholar 

  77. Strohbach MW, Haase D, Kabisch N (2009) Birds and the city: urban biodiversity, land use, and socioeconomics. Ecol Soc 14(2):15. doi:31

    Google Scholar 

  78. Tarsitano E (2006) Interaction between the environment and animals in urban settings: Integrated and participatory planning. Environ Manag 38(5):799–809. doi:10.1007/s00267-005-0148-8

    Article  Google Scholar 

  79. Thompson BC, Matusik-Rowan PL, Boykin KG (2002) Prioritizing conservation potential of arid-land montane natural springs and associated riparian areas. J Arid Environ 50(4):527–547. doi:10.1006/jare.2001.0922

    Article  Google Scholar 

  80. TMWA (2010) Truckee meadows water authority, washoe county consensus forecast 2010–2030.

  81. Trammell EJ, Weisberg PJ, Bassett SD (2011) Avian response to urbanization in the arid riparian context of Reno, USA. Landsc Urban Plann. doi:10.1016/j.landurbplan.2011.03.013

  82. Tremblay MA, St Clair CC (2009) Factors affecting the permeability of transportation and riparian corridors to the movements of songbirds in an urban landscape. J Appl Ecol 46(6):1314–1322. doi:10.1111/j.1365-2664.2009.01717.x

    Google Scholar 

  83. USGS (2010) National Water Information System: Truckee River at Reno, NV. http://waterdata.usgs.gov/nwis/nwisman/?site_no=10348000. Accessed September 10, 2010

  84. Vallejo BM, Aloy AB, Ong PS (2009) The distribution, abundance and diversity of birds in Manila’s last greenspaces. Landsc Urban Plann 89(3–4):75–85. doi:10.1016/j.landurbplan.2008.10.013

    Article  Google Scholar 

  85. Warkentin IG, Reed JM (1999) Effects of habitat type and degradation on avian species richness in Great Basin riparian habitats. Great Basin Nat 59(3):205–212

    Google Scholar 

  86. Weng QH, Lu DS, Liang BQ (2006) Urban surface biophysical descriptors and land surface temperature variations. Photogramm Eng Remote Sens 72(11):1275–1286

    Google Scholar 

Download references

Acknowledgments

We would like to thank P. Weisberg for his guidance throughout this study. We also wish to thank J. Stefka, A. Robbins, A. Murdukhayeva and P. Marin for assistance in the field, and C. Mortin for python programming assistance.

Author information

Affiliations

Authors

Corresponding author

Correspondence to E. Jamie Trammell.

Appendix 1

Appendix 1

Individual variable correlations to avian community resemblance along the urbanized portion of the Truckee River, Nevada, USA. Variables are ordered in terms of their p-value (lowest to highest) and Mantel’s r statistic (highest to lowest), and organized by variable type (vegetation vs. land use and infrastructure). NDVI had the highest single variable correlation to community resemblance, though several land use planning variables had significant correlations as well. The variables in bold were used to create a vegetation and land use and infrastructure dissimilarity matrix to compare as a whole to avian community resemblance.

Table 5

Table 5  

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Trammell, E.J., Bassett, S. Impact of urban structure on avian diversity along the Truckee River, USA. Urban Ecosyst 15, 993–1013 (2012). https://doi.org/10.1007/s11252-012-0251-6

Download citation

Keywords

  • Land use planning
  • Mantel test
  • Random Forests
  • Riparian
  • Urban birds
  • Truckee River