Skip to main content

Urban areas may serve as habitat and corridors for dry-adapted, heat tolerant species; an example from ants

Abstract

We collected ants from six urban and one forest land-use types in Raleigh, NC to examine the effects of urbanization on species richness and assemblage composition. Since urban areas are warmer (i.e., heat island effect) we also tested if cities were inhabited by species from warmer/drier environments. Species richness was lower in industrial areas relative to other urban and natural environments. There are two distinct ant assemblages; 1) areas with thick canopy cover, and 2) more disturbed open urban areas. Native ant assemblages in open environments have more southwestern (i.e., warmer/drier) distributions than forest assemblages. High native species richness suggests that urban environments may allow species to persist that are disappearing from natural habitat fragments. The subset of species adapted to warmer/drier environments indicates that urban areas may facilitate the movement of some species. This suggests that urban adapted ants may be particularly successful at tracking future climate change.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bernard F (1958) Fourmis des villes et fourmis du Bled entre Rabat et Tanger. Bull Soc Sci Nat Phys Maroc 38:131–142

    Google Scholar 

  • Beyer HL (2004) Hawth’s analysis tools for ArcGIS. In. Available at http://www.spatialecology.com/htools

  • Bolger DT, Suarez AV, Crooks KR, Morrison SA, Case TJ (2000) Arthropods in urban habitat fragments in Southern California: area, age, and edge effects. Ecol Appl 10:1230–1248

    Article  Google Scholar 

  • Carpintero S, Lopez-Reyes J, de Reyna LA (2003) Impact of human dwellings on the distribution of the exotic Argentine ant: a case study in the Doñana National Park, Spain. Biol Conserv 115:279–289

    Article  Google Scholar 

  • Carter WG (1962) Ant distribution in North Carolina. J Mitchell Sci Soc, Chapel Hill, NC 78:150–204

    Google Scholar 

  • Chamberlain DE, Cannon AR, Toms MP, Leech DI, Hatchwell BJ, Gaston KJ (2009) Avian productivity in urban landscapes: a review and meta-analysis. Ibis 151:1–18

    Article  Google Scholar 

  • Chander G, Markham B (2003) Revised Landsat-5 TM radiometric calibration procedures and postcalibration dynamic ranges. IEEE Trans Geosci Remote Sens 41:2674–2677

    Article  Google Scholar 

  • Clarke KM, Fisher BL, LeBuhn G (2008) The influence of urban park characteristics on ant (Hymenoptera, Formicidae) communities. Urban Ecosyst 11:317–334

    Article  Google Scholar 

  • Cremer S, Ugelvig LV, Drijfhout FP, Schlick-Steiner BC, Steiner FM, Seifert B, Hughes DP, Schulz A, Petersen KS, Konrad H, Stauffer C, Kiran K, Espadaler X, d’Ettorre P, Aktac N, Eilenberg J, Jones GR, Nash DR, Pedersen JS, Boomsma JJ (2008) The evolution of invasiveness in garden ants. PLoS ONE 3:e3838

    Article  PubMed  Google Scholar 

  • Delgadillo CM, Cardenas AS (2000) Urban mosses in Mexico City. An Inst Biol Univ Nac Auton Mex, Serie Botanica 71:63–72

    Google Scholar 

  • Dunn RR, Gavin MC, Sanchez MC, Solomon JN (2006) The pigeon paradox: dependence of global conservation on urban nature. Conserv Biol 20:1814–1816

    Article  PubMed  Google Scholar 

  • Forys EA, Allen CR (2005) The impacts of sprawl on biodiversity: the ant fauna of the lower Florida Keys. Ecology and Society 10:25

    Google Scholar 

  • Friedrich R, Philpott SM (2009) Nest-site limitation and nesting resources of ants (Hymenoptera: Formicidae) in urban green spaces. Environ Entomol 38:600–607

    Article  PubMed  Google Scholar 

  • Gamble C (2004) Back to the walls. Nature 431:248–248

    Article  CAS  Google Scholar 

  • Gao B-C (1996) NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens Environ 58:257–266

    Article  Google Scholar 

  • Gibb H, Hochuli DF (2003) Colonisation by a dominant ant facilitated by anthropogenic disturbance: effects on ant assemblage composition, biomass and resource use. Oikos 103:469–478

    Article  Google Scholar 

  • Grimm NB, Faeth SH, Golubiewski NE, Redman CL, Wu J, Bai X, Briggs JM (2008) Global change and the ecology of cities. Science 319:756–760

    Article  PubMed  CAS  Google Scholar 

  • Gu Y, Brown JF, Verdin JP, Wardlow B (2007) A five-year analysis of MODIS NDVI and NDWI for grassland drought assessment over the central Great Plains of the United States. Geophys Res Lett 34:L06407

    Article  Google Scholar 

  • Hedges SA (1998) Field guide for the management of structure infesting ants, 2nd edn. G.I.E. Inc., Cleveland

    Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978

    Article  Google Scholar 

  • Hölldobler B, Wilson EO (1990) The ants. The Belknap Press of Harvard University Press, Cambridge

    Google Scholar 

  • Holway DA, Suarez AV (2006) Homogenization of ant communities in mediterranean California: the effects of urbanization and invasion. Biol Conserv 127:319–326

    Article  Google Scholar 

  • Holway DA, Lach L, Suarez AV, Tsutsui ND, Case TJ (2002) The causes and consequences of ant invasions. Annu Rev Ecol Syst 33:181–233

    Article  Google Scholar 

  • Homer C, Huang C, Yang L, Wylie B, Coan M (2004) Development of a 2001 national landcover database for the United States. Photogramm Eng Remote Sens 70:829–840

    Google Scholar 

  • Huang C, Homer C, Yang L (2003) Regional forest land cover characterization using Landsat type data. In: Wulder M, Franklin S (eds) Methods and applications for remote sensing of forests: concepts and case studies. Kluwer Academic Publishers, pp. 389–410

  • IPCC (2007) Climate change 2007: synthesis report. In: Pachauri RK, Reisinger A (eds) Contribution of working groups I, II and III to the fourth assessment report of the intergovernmental panel on climate change. IPCC, Geneva, p 104

    Google Scholar 

  • Jackson TJ, Chen D, Cosh M, Li F, Anderson M, Walthall C, Doriaswamy P, Hunt ER (2004) Vegetation water content mapping using Landsat data derived normalized difference water index for corn and soybeans. Remote Sens Environ 92:475–482

    Article  Google Scholar 

  • Kanda LL, Fuller TK, Sievert PR (2009a) Landscape associations of road-killed Virginia Opossums (Didelphis virginiana) in Central Massachusetts. Am Midl Nat 156:128–134

    Article  Google Scholar 

  • Kanda LL, Fuller TK, Sievert PR, Kellogg RL (2009b) Seasonal source-sink dynamics at the edge of a species’ range. Ecology 90:1574–1585

    Article  Google Scholar 

  • Kark S, Iwaniuk A, Schalimtzek A, Banker E (2007) Living in the city: can anyone become an ‘urban exploiter’? J Biogeogr 34:638–651

    Article  Google Scholar 

  • Lach L, Parr CL, Abbott KL (2010) Ant ecology. Oxford University Press, New York

    Google Scholar 

  • LaSorte FA, McKinney ML, Pysek P, Klotz S, Rapson GL, Celesti-Grapow L, Thompson K (2008) Distance decay of similarity among European urban floras: the impact of anthropogenic activities on β diversity. Glob Ecol Biogeogr 17:363–371

    Article  Google Scholar 

  • Lessard J-P, Buddle CM (2005) The effects of urbanization on ant assemblages (Hymenoptera: Formicidae) associated with the Molson Nature Reserve, Quebec. Can Entomol 137:215–225

    Article  Google Scholar 

  • Lundholm J, Marlin A (2006) Habitat origins and microhabitat preferences of urban plant species. Urban Ecosyst 9:139–159

    Article  Google Scholar 

  • Lynch JF (1981) Seasonal, successional, and vertical segregation in a Maryland ant community. Oikos 37:183–198

    Article  Google Scholar 

  • Mack RN, Lonsdale WM (2001) Humans as global plant dispersers: getting more than we bargained for. Bioscience 51:95–102

    Article  Google Scholar 

  • Mack RN, Simberloff D, Lonsdale WM, Evans H, Clout M, Bazzaz FA (2000) Biotic invasions: causes, epidemiology, global consequences, and control. Ecol Appl 10:689–710

    Article  Google Scholar 

  • Malozemova LA, Malozemov YA (1999) Ecological peculiarities of ants in urbanized areas. Russ J Ecol 30:283–286

    Google Scholar 

  • McCune B, Mefford MJ (1999) Multivariate analysis of ecological data. In: MjM Software, Gleneden Beach, Oregon, USA

  • McIntyre NE (2009) Ecology of urban arthropods: a review and a call to action. Ann Entomol Soc Am 93:825–835

    Article  Google Scholar 

  • McIntyre NE, Rango J, Fagan WF, Faeth SH (2001) Ground arthropod community structure in a heterogeneous urban environment. Landsc Urban Plan 52:257–274

    Article  Google Scholar 

  • McKinney ML (2006) Urbanization as a major cause of biotic homogenization. Biol Conserv 127:247–260

    Article  Google Scholar 

  • McKinney M (2008) Effects of urbanization on species richness: a review of plants and animals. Urban Ecosyst 11:161–176

    Article  Google Scholar 

  • Menke SB, Booth W, Dunn RR, Schal C, Vargo EL, Silverman J (2010) Is it easy to be urban? Convergent success in urban habitats among lineages of a widespread native ant. PLoS ONE 5:e9194

    Article  PubMed  Google Scholar 

  • Miller JR, Hobbs RJ (2002) Conservation where people live and work. Conserv Biol 16:330–337

    Article  Google Scholar 

  • Minor E, Urban D (2010) Forest bird communities across a gradient of urban development. Urban Ecosyst 13:51–71

    Article  Google Scholar 

  • Pacheco R, Vasconcelos HL (2007) Invertebrate conservation in urban areas: ants in the Brazilian Cerrado. Landsc Urban Plan 81:193–199

    Article  Google Scholar 

  • Pisarski B, Czechowski W (1978) Influence de al pression urbaine sur la myrmecofaune. Memorabilia Zool 29:109–128

    Google Scholar 

  • Rouse JW, Haas RH, Schell JA, Deering DW (1973) Monitoring vegetation systems in the Great Plains with ERTS. In: NASA (ed), pp. 309–317. Goddard Space Flight Center 3d ERTS-1 Symposium

  • Sanford MP, Manley PN, Murphy DD (2009) Effects of urban development on ant communities: implications for ecosystem services and management. Conserv Biol 23:131–141

    Article  PubMed  Google Scholar 

  • Shochat E, Warren PS, Faeth SH, McIntyre NE, Hope D (2006) From patterns to emerging processes in mechanistic urban ecology. Trends Ecol Evol 21:186–191

    Article  PubMed  Google Scholar 

  • Stringer L, Stephens A, Suckling D, Charles J (2009) Ant dominance in urban areas. Urban Ecosyst 12:503–514

    Article  Google Scholar 

  • Suarez AV, Bolger DT, Case TJ (1998) Effects of fragmentation and invasion on native ant communities in coastal southern California. Ecology 79:2041–2056

    Article  Google Scholar 

  • Thompson B, McLachlan S (2007) The effects of urbanization on ant communities and myrmecochory in Manitoba, Canada. Urban Ecosyst 10:43–52

    Article  Google Scholar 

  • Tschinkel WR (2006) The fire ants. The Belknap Press of Harvard University Press, Cambridge

    Google Scholar 

  • Underwood EC, Fisher BL (2006) The role of ants in conservation monitoring: if, when, and how. Biol Conserv 132:166–182

    Article  Google Scholar 

  • UnitedNations (2007) Population division world urbanization prospects: the 2007 revision. In: Affairs’ UDoEaS (ed)

  • Vepsäläinen K, Ikonen H, Koivula MJ (2008) The structure of ant assemblages in an urban area of Helsinki, southern Finland. Ann Zool Fenn 45:109–127

    Google Scholar 

  • Whitham TG, Bailey JK, Schweitzer JA, Shuster SM, Bangert RK, LeRoy CJ, Lonsdorf EV, Allan GJ, DiFazio SP, Potts BM, Fischer DG, Gehring CA, Lindroth RL, Marks JC, Hart SC, Wimp GM, Wooley SC (2006) A framework for community and ecosystem genetics: from genes to ecosystems. Nat Rev Genet 7:510–523

    Article  PubMed  CAS  Google Scholar 

  • Williams JW, Jackson ST (2007) Novel climates, no-analog communities, and ecological surprises. Front Ecol Environ 5:475–482

    Article  Google Scholar 

  • Williams JW, Jackson ST, Kutzbach JE (2007) Projected distributions of novel and disappearing climates by 2100 AD. PNAS 104:5738–5742

    Article  PubMed  CAS  Google Scholar 

  • Williams NSG, Schwartz MW, Vesk PA, McCarthy MA, Hahs AK, Clemants SE, Corlett RT, Duncan RP, Norton BA, Thompson K, McDonnell MJ (2009) A conceptual framework for predicting the effects of urban environments on floras. J Ecol 97:4–9

    Article  Google Scholar 

  • Yamaguchi T (2004) Influence of urbanization on ant distribution in parks of Tokyo and Chiba City, Japan I. Analysis of ant species richness. Ecol Res 19:209–216

    Article  Google Scholar 

  • Yang L, Huang C, Homer CG, Wylie BK, Coan MJ (2002) An approach for mapping large-area impervious surfaces: synergistic use of Landsat 7 ETM + and high spatial resolution imagery. Can J Remote Sens 29:230–240

    Google Scholar 

  • Yasuda M, Koike F (2009) The contribution of the bark of isolated trees as habitat for ants in an urban landscape. Landsc Urban Plan 92:276–281

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank E. Spicer for assistance in collecting and sorting traps and P. Ward for helping identify specimens. G. Ryman, K. Somers, and D. Urban assisted us with GIS data. Two anonymous reviewers provided helpful comments. SBM and JS were funded in part by the Pest Management Foundation and the Blanton J. Whitmire endowment. RRD, MDW, SBM, and BG were supported during this work by DOE-NICCR grant, DOE-PER grnt (DE-FG02-08ER64510), and a NASA Biodiversity Grant (NNX09AK22G). NASA Earth Systems Science Fellowship funded Landsat image processing, which was performed by JOS at the Duke University Landscape Ecology Laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sean B. Menke.

Appendices

Appendix 1

Table 2 Southern and western distributional extents of native ant species based on the North American Database of Ant Species (http://www.antmacroecology.org/projects.html). Maximum temperature and minimum precipitation were extracted from WorldClim data based on the species range

Appendix 2

Table 3 Presence / absence matrix for all sites categorized by land-use types. A = Agriculture, B = Business, * = non-native species
Table 4 Presence / absence matrix for all sites categorized by land-use types. G = Greenway, I = Industrial, P = Park, * = non-native species
Table 5 Presence / absence matrix for all sites categorized by land-use types. R = Residential, * = non-native species
Table 6 Presence / absence matrix for all sites categorized by land-use types. F = Forest, * = non-native species

Appendix 3

Table 7 Comparison of all possible pair-wise combinations of land-use types with MRPP, based on Sorensen distances. A = chance-corrected between-group agreement; p = probability of Type I error for no difference between groups. Signigicant p-value after Bonferonni correction = 0.00238

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Menke, S.B., Guénard, B., Sexton, J.O. et al. Urban areas may serve as habitat and corridors for dry-adapted, heat tolerant species; an example from ants. Urban Ecosyst 14, 135–163 (2011). https://doi.org/10.1007/s11252-010-0150-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11252-010-0150-7

Keywords