Urban Ecosystems

, Volume 12, Issue 2, pp 115–126 | Cite as

Plant species richness, vegetation structure and soil resources of urban brownfield sites linked to successional age

  • Ute Schadek
  • Barbara Strauss
  • Robert Biedermann
  • Michael Kleyer


Brownfield sites contribute significantly to urban biodiversity due to their high spatio-temporal dynamics and their transient character. Plant species richness is, among other factors, contingent on vegetation structure. In this study, we examined plant species richness, vegetation height, vegetation density and soil parameters of a chronosequence of urban brownfield sites in Bremen and Berlin, Germany. These parameters were linked to successional age using single and multiple linear regression. Most biotic and abiotic variables differed significantly between sites with and without brick rubble in the soil, indicating a strong effect of site history on vegetation development. Soil parameters of the sites were not clearly linked to site age. Vegetation height and density increased significantly over time. Additionally, height and density increased with soil phosphorus content and water permeability of the soil, whilst plant available water only contributed to the model of vegetation density. Species richness increased with vegetation height but decreased with vegetation density. This indicates that species richness is maximised when a community comprises a mixture of early and mid-successional species. The results suggest that high plant species richness on sandy brownfield sites can be achieved by strong disturbances at an interval of 5 (±2) years. However, limiting soil resources can prolong this interval considerably. Management aiming to maximise plant species richness in urban brownfield sites should therefore take into account the interplay between soil resources and site age.


Brownfield sites Derelict sites Urban ecology Vegetation structure Soil nutrients Soil water Plant species richness Succession 



We thank Regine Kayser for laboratory work. This study was conducted as part of the TEMPO collaborative research project (Temporal Biodiversity and Building) and was supported by the German Federal Ministry of Education and Research in the framework of the programme “Biosphere Research—Integrative and Application-Oriented Model Projects” (BioTeam, BMBF, DE, grant 01LM0210).


  1. Aerts R, Chapin FS (2000) The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns. In: Aerts R, Chapin FS (ed) Advances in ecological research, vol 30. pp 1–67Google Scholar
  2. Angold PG, Sadler JP, Hill MO, Pullin A, Rushton S, Austin K et al (2006) Biodiversity in urban habitat patches. Sci Total Environ 360:196–204 doi: 10.1016/j.scitotenv.2005.08.035 PubMedCrossRefGoogle Scholar
  3. Anon. [Arbeitsgruppe-Boden] (1996) Bodenkundliche Kartieranleitung (KA4). Hannover (DE)Google Scholar
  4. Backhaus K, Erichson B, Plinke W, Weiber R (2003) Multivariate analysemethoden. Springer, BerlinGoogle Scholar
  5. Bakker JP, Olff H, Willems JH, Zobel M (1996) Why do we need permanent plots in the study of long-term vegetation dynamics? J Veg Sci 7:147–155 doi: 10.2307/3236314 CrossRefGoogle Scholar
  6. Bautista-Cruz A, del Castillo RF (2005) Soil changes during secondary succession in a tropical montane cloud forest area. Soil Sci Soc Am J 69:906–914 doi: 10.2136/sssaj2004.0130 CrossRefGoogle Scholar
  7. Bazzaz FA (1996) Plants in changing environments. Cambridge University Press, CambridgeGoogle Scholar
  8. Blatt SE, Crowder A, Harmsen R (2005) Secondary succession in two south-eastern Ontario old-fields. Plant Ecol 177:25–41 doi: 10.1007/s11258-005-2018-0 CrossRefGoogle Scholar
  9. Bornkamm R (1986) Ruderal succession starting at different seasons. Acta Societatis Botanicorum Pol 55:403–419Google Scholar
  10. Bornkamm R, Hennig U (1982) Experimental ecological study of succession of ruderal plant-communities on different soils. 1. Floristic composition of the vegetation. Flora 172:267–316Google Scholar
  11. Bungard RA, Zipperlen SA, Press MC, Scholes JD (2002) The influence of nutrients on growth and photosynthesis of seedlings of two rainforest dipterocarp species. Funct Plant Biol 29:505–515 doi: 10.1071/PP01137 CrossRefGoogle Scholar
  12. Chadwick OA, Derry LA, Vitousek PM, Huebert BJ, Hedin LO (1999) Changing sources of nutrients during four million years of ecosystem development. Nature 397:491–497 doi: 10.1038/17276 CrossRefGoogle Scholar
  13. Chapin FS, Walker LR, Fastie CL, Sharman LC (1994) Mechanisms of primary succession following deglaciation at Glacier Bay, Alaska. Ecol Monogr 64:149–175 doi: 10.2307/2937039 CrossRefGoogle Scholar
  14. Chapin FS, Mooney HA, Matson PA (2002) Principles of terrestrial ecosystem ecology. Springer, New YorkGoogle Scholar
  15. Cook WM, Yao J, Foster BL, Holt RD, Patrick LB (2005) Secondary succession in an experimentally fragmented landscape: community patterns across space and time. Ecology 86:1267–1279 doi: 10.1890/04-0320 CrossRefGoogle Scholar
  16. De Deyn GB, Raaijmakers CE, Van der Putten WH (2004) Plant community development is affected by nutrients and soil biota. J Ecol 92:824–834 doi: 10.1111/j.0022-0477.2004.00924.x CrossRefGoogle Scholar
  17. Deutscher Wetterdienst (2006) Mean climate values for the period 1961 to 1990.
  18. DVWK [Deutscher Verband für Wasserwirtschaft und Kulturbau] (1996) Ermittlung der Verdunstung von Land-und Wasserflächen. Merkblätter zur Wasserwirtschaft 238. Wirtschafts und Verl.-Ges. Gas Wasser, BonnGoogle Scholar
  19. Effland WR, Pouyat RV (1997) The genesis, classification, and mapping of soils in urban areas. Urban Ecosyst 1:217–228 doi: 10.1023/A:1018535813797 CrossRefGoogle Scholar
  20. Fiala K, Tuma I, Holub P, Tesarova M, Jandak J, Pavkova A (2001) Importance of grass cover in reduction of negative processes in soil affected by air pollution. Rostlinna Vyroba 47:377–382Google Scholar
  21. Foster BL, Tilman D (2000) Dynamic and static views of succession: testing the descriptive power of the chronosequence approach. Plant Ecol 146:1–10 doi: 10.1023/A:1009895103017 CrossRefGoogle Scholar
  22. Gilbert OL (1989) The ecology of urban habitats. Chapman and Hall, LondonGoogle Scholar
  23. Gough L, Shaver GR, Carroll J, Royer DL, Laundre JA (2000) Vascular plant species richness in Alaskan arctic tundra: the importance of soil pH. J Ecol 88:54–66 doi: 10.1046/j.1365-2745.2000.00426.x CrossRefGoogle Scholar
  24. Grime JP (1974) Vegetation classification by reference to strategies. Nature 250:26–31 doi: 10.1038/250026a0 CrossRefGoogle Scholar
  25. Grime JP (2001) Plant strategies, vegetation processes, and ecosystem properties. Wiley, Chichester (UK)Google Scholar
  26. Härdtle W, von Oheimb G, Westphal C (2003) The effects of light and soil conditions on the species richness of the ground vegetation of deciduous forests in northern Germany (Schleswig–Holstein). For Ecol Manage 182:327–338 doi: 10.1016/S0378-1127(03)00091-4 CrossRefGoogle Scholar
  27. Hirzel A, Guisan A (2002) Which is the optimal sampling strategy for habitat suitability modelling? Ecol Modell 157:329–339 doi: 10.1016/S0304-3800(02)00203-X CrossRefGoogle Scholar
  28. Horn R, Taubner H (1997) Wasser- und Lufthaushalt. In: Blume HP, Schleuß U (eds) Bewertung anthropogener Stadtböden. Schriftenreihe Institut für Pflanzenernährung und Bodenkunde Universität Kiel 38:32–65Google Scholar
  29. Isermann M (2005) Soil pH and species diversity in coastal dunes. Plant Ecol 178:111–120 doi: 10.1007/s11258-004-2558-8 CrossRefGoogle Scholar
  30. Kleyer M, Biedermann R, Henle K, Poethke HJ, Poschlod P, Schröder B et al (2007) Mosaic cycles in agricultural landscapes of Central Europe. Basic Appl Ecol 8:295–309 doi: 10.1016/j.baae.2007.02.002 CrossRefGoogle Scholar
  31. Knops JMH, Tilman D (2000) Dynamics of soil nitrogen and carbon accumulation for 61 years after agricultural abandonment. Ecology 81:88–98CrossRefGoogle Scholar
  32. Korzeniak J (2005) Species richness and diversity related to anthropogenic soil disturbance in abandoned meadows in the Bieszczady Mts. (Eastern Carpathians). Acta Soc Bot Pol 74:65–71Google Scholar
  33. Kühn I, Brandl R, Klotz S (2004) The flora of German cities is naturally species rich. Evol Ecol Res 6:749–764Google Scholar
  34. Muratet A, Machon N, Jiguet F, Moret J, Porcher E (2007) The role of urban structures in the distribution of wasteland flora in the Greater Paris area, France. Ecosystems (N Y, Print) 10:661–671 doi: 10.1007/s10021-007-9047-6 CrossRefGoogle Scholar
  35. Nagler A, Cordes H (1993) Atlas der gefährdeten und seltenen Farn- und Blütenpflanzen im Land Bremen mit Auswertung für den Arten und Biotopschutz. Abh Naturwissenschaftlichen Vereins Bremen 42:580Google Scholar
  36. Niemelä J (1999) Is there a need for a theory of urban ecology? Urban Ecosyst 3:57–65 doi: 10.1023/A:1009595932440 CrossRefGoogle Scholar
  37. Otto R, Krusi BO, Burga CA, Fernandez-Palacios JM (2006) Old-field succession along a precipitation gradient in the semi-arid coastal region of Tenerife. J Arid Environ 65:156–178 doi: 10.1016/j.jaridenv.2005.07.005 CrossRefGoogle Scholar
  38. Pauchard A, Aguayo M, Pena E, Urrutia R (2006) Multiple effects of urbanization on the biodiversity of developing countries: the case of a fast-growing metropolitan area (Concepcion, Chile). Biol Conserv 127:272–281 doi: 10.1016/j.biocon.2005.05.015 CrossRefGoogle Scholar
  39. Pickett STA (1989) Space-for-time substitution as an alternative to long-term studies. In: Likens GE (ed) Long-term studies in Ecology. Springer, New York, pp 110–135Google Scholar
  40. Pickett STA, Cadenasso ML, Bartha S (2001) Implications from the Buell–Small succession study for vegetation restoration. Appl Veg Sci 4:41–52CrossRefGoogle Scholar
  41. Prach K, Pysek P, Bastl M (2001) Spontaneous vegetation succession in human-disturbed habitats: a pattern across seres. Appl Veg Sci 4:83–88CrossRefGoogle Scholar
  42. Pysek P, Chocholouskova Z, Pysek A, Jarosik V, Chytry M, Tichy L (2004) Trends in species diversity and composition of urban vegetation over three decades. J Veg Sci 15:781–788 doi: 10.1658/1100-9233(2004)015[0781:TISDAC]2.0.CO;2 Google Scholar
  43. Radeloff VR, Mladenoff DJ, Boyce MS (2000) A historical perspective and future outlook on landscape scale restoration in the Northwest Wisconsin Pine Barrens. Restor Ecol 8:119–126 doi: 10.1046/j.1526-100x.2000.80018.x CrossRefGoogle Scholar
  44. Rebele F (1994) Urban ecology and special features of urban ecosystems. Glob Ecol Biogeogr Lett 4:173–187CrossRefGoogle Scholar
  45. Rebele F, Lehmann C (2002) Restoration of a landfill site in Berlin, Germany by spontaneous and directed succession. Restor Ecol 10:340–347 doi: 10.1046/j.1526-100X.2002.01026.x CrossRefGoogle Scholar
  46. Richter DD, Markewitz D, Wells CG, Allen HL, April R, Heine PR et al (1994) Soil chemical change during 3 decades in an old-field Loblolly-Pine (Pinus taeda L) ecosystem. Ecology 75:1463–1473 doi: 10.2307/1937469 CrossRefGoogle Scholar
  47. Ricketts T, Imhoff M (2003) Biodiversity, urban areas, and agriculture: Locating priority ecoregions for conservation. Conservation Ecology 8Google Scholar
  48. Rudner M, Biedermann R, Schröder B, Kleyer M (2007) Integrated grid based ecological and economic (INGRID) landscape model—a tool to support landscape management decisions. Environ Model Softw 22:177–187 doi: 10.1016/j.envsoft.2005.07.016 CrossRefGoogle Scholar
  49. Schaffers AP (2002) Soil, biomass, and management of semi-natural vegetation—Part II. Factors controlling species diversity. Plant Ecol 158:247–268 doi: 10.1023/A:1015545821845 CrossRefGoogle Scholar
  50. Scheffer F (1984) Lehrbuch der Bodenkunde /Scheffer/Schachtschabel. 11. ed. Enke, Stuttgart.Google Scholar
  51. Schlichting E, Blume HP, Stahr K (1995) Bodenkundliches Praktikum. Blackwell, BerlinGoogle Scholar
  52. Strauss B, Biedermann R (2006) Urban brownfields as temporary habitats: driving forces for the diversity of phytophagous insects. Ecography 29:928–940 doi: 10.1111/j.2006.0906-7590.04765.x CrossRefGoogle Scholar
  53. Sukopp H, Wittig R (1993) Stadtökologie. Fischer, JenaGoogle Scholar
  54. Sykora KV, van den Bogert J, Berendse F (2004) Changes in soil and vegetation during dune slack succession. J Veg Sci 15:209–218 doi: 10.1658/1100-9233(2004)015[0209:CISAVD]2.0.CO;2 Google Scholar
  55. Taubner H, Horn R (1999) Estimating soil water and air capacity from physical properties in anthropogenic substrate horizons. J Plant Nutr Soil Sci—Z Pflanzenernahr Bodenkd 162:33–40CrossRefGoogle Scholar
  56. Wang GH (2002) Plant traits and soil chemical variables during a secondary vegetation succession in abandoned fields on the loess plateau. Acta Bot Sin 44:990–998Google Scholar
  57. Wegener U (1998) Naturschutz in der Kulturlandschaft. Fischer, JenaGoogle Scholar
  58. Zehm A, Nobis M, Schwabe A (2003) Multiparameter analysis of vertical vegetation structure based on digital image processing. Flora 198:142–160Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Ute Schadek
    • 1
  • Barbara Strauss
    • 1
  • Robert Biedermann
    • 1
  • Michael Kleyer
    • 1
  1. 1.Landscape Ecology Group, Department of Biology and Environmental SciencesCarl von Ossietzky University of OldenburgOldenburgGermany

Personalised recommendations