Preservice elementary science teachers’ argumentation competence: impact of a training programme

Abstract

The recent literature has shown the importance of preservice elementary science teachers (PESTs) having a deep understanding of argumentation, as this factor may affect the nature of the class activities that are taught and what students learn. A lack of understanding of this factor may represent an obstacle in the development of science education programmes in line with the development of scientific competences. This paper presents the results of the design and implementation of a training programme of 6 sessions (12 h of class participation plus 8 h of personal homework) on argumentation. The programme was carried out by 57 Spanish PESTs from Malaga, Spain. The training programme incorporates the innovative use of certain strategies to improve competence in argumentation, such as teaching PESTs to identify the elements of arguments in order to design assessment rubrics or by including peer assessment during evaluation with and without rubrics. The results obtained on implementing the training programme were evaluated based on the development of PESTs’ argumentation competence using Toulmin’s argumentative model. Data collection methods involved two tasks carried out at the beginning and the end of the programme, i.e., pre- and post-test, respectively. The conclusion of the study is that students made significant progress in their argumentation competence on completing the course. In addition, PESTs who followed the training programme achieved statistically better results at the end than those in the control group (n = 41), who followed a traditional teaching programme. A 6-month transfer task showed a slight improvement for the PESTs of the experimental group in relation to the control group in their ability to transfer argumentation to practice.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

Source the authors of this research

Fig. 3

References

  1. Andrews, R., & Mitchell, S. (2001). Essays in argument. London: Middlesex Univ. Press.

    Google Scholar 

  2. Archila, P. A. (2012). La investigación en argumentación y sus implicaciones en la formación inicial de profesores de ciencias. [Argumentation research and its implications in science preservice teachers’ training]. Revista Eureka sobre Enseñanza y Divulgación de las. Ciencias, 9(3), 361–375.

    Google Scholar 

  3. Cebrián-Robles, D., Serrano-Angulo, J., & Cebrián-de-la-Serna, M. (2014). Federated eRubric service to facilitate self-regulated learning in the European University Model. European Educational Research Journal, 13(5), 575–584.

  4. Cebrián-Robles, D. (2016). CoRubric. http://corubric.com Accessed 13 January 2018.

  5. Franco-Mariscal, A.J. (2015). Competencias científicas en la enseñanza y el aprendizaje por investigación. Un estudio de caso sobre corrosión de metales en secundaria [Scientific Competences in Teaching and Learning through Research: a Case Study about the Corrosion of Metals in Secondary Education]. Enseñanza de las Ciencias, 33(2), 231–252.

  6. Belland, B. R., Glazewski, K. D., & Richardson, J. C. (2011). Problem-based learning and argumentation: Testing a scaffolding framework to support middle school students’ creation of evidence-based arguments. Instructional Science, 39(5), 667–694.

    Article  Google Scholar 

  7. Berland, L. K., & Reiser, B. J. (2011). Classroom communities’ adaptations of the practice of scientific argumentation. Science Education, 95(2), 191–216.

    Article  Google Scholar 

  8. Black, P., Harrison, C., Lee, C., Marshall, B., & William, D. (2003). Assessment for learning: Putting it into practice. Maidenhead: Open University Press.

    Google Scholar 

  9. Boud, D., Cohen, R., & Sampson, J. (1999). Peer learning and assessment. Assessment & Evaluation in Higher Education, 24(4), 413–426.

    Article  Google Scholar 

  10. Bulgren, J. A., Ellis, J. D., & Marquis, J. G. (2014). The use and effectiveness of an argumentation and evaluation intervention in science classes. Journal of Science Education and Technology, 23(1), 82–97.

    Article  Google Scholar 

  11. Bybee, R., & McCrae, B. (2011). Scientific literacy and student attitudes: Perspectives from PISA 2006 science. International Journal of Science Education, 33(1), 7–26.

    Article  Google Scholar 

  12. Cazden, C. (1991). El discurso en el aula. El lenguaje de la enseñanza y el aprendizaje [Classroom discourse: The language of teaching and learning]. Barcelona: Paidós-MEC.

    Google Scholar 

  13. Cebrián-de-la-Serna, M., & Monedero-Moya, J. J. (2014). Evolución en el diseño y funcionalidad de las rúbricas: Desde las rúbricas “cuadradas” a las erúbricas federadas [Evolution in the design and functionality of rubrics: From square rubrics to Federated eRubrics]. REDU Revista de Docencia Universitaria, 12(1), 81–89.

    Article  Google Scholar 

  14. Cetin, P. S. (2014). Explicit argumentation instruction to facilitate conceptual understanding and argumentation skills. Research in Science & Technological Education, 32(1), 1–20.

    Article  Google Scholar 

  15. Chao, K. L., & Jonassen, D. H. (2002). The effects of argumentation scaffolds on argumentation and problem solving. Educational Technology Research and Development, 50(3), 5–22.

    Article  Google Scholar 

  16. Chin, C., & Osborne, J. (2010). Students’ questions and discursive interaction: Their impact on argumentation during collaborative group discussions in science. Journal of Research in Science Teaching, 47(7), 883–908.

    Article  Google Scholar 

  17. Clark, D. B., & Sampson, V. (2008). Assessing dialogic argumentation in online environments to relate structure, grounds and conceptual quality. Journal of Research in Science Teaching, 45(3), 293–321.

    Article  Google Scholar 

  18. Cohen, J. (1988). Statistical power analysis for the behavioral sciences. Hillsdale: Erlbaum.

    Google Scholar 

  19. Custodio, E., & Sanmartí, N. (2005). Mejorar el aprendizaje en la clase de ciencias aprendiendo a escribir justificaciones [Improving learning in science class by learning to write justifications]. In Enseñanza de las Ciencias, extra number, VII Congreso, pp. 1–6.

  20. Demircioğlu, T., & Uçar, S. (2012). The effect of argument-driven inquiry on pre-service science teachers’ attitudes and argumentation skills. Procedia Social and Behavioral Sciences, 46, 5035–5039.

    Article  Google Scholar 

  21. Deng, Y., & Wang, H. (2017). Research on evaluating chinese students’ competence of written argumentation in the context of chemistry. Chemistry Education Research and Practice, 18(1), 127–150.

    Article  Google Scholar 

  22. Driver, R., Newton, P., & Osborne, J. (2000). Establishing the norms of scientific argumentation in classrooms. Science Education, 84(3), 287–312.

    Article  Google Scholar 

  23. Duschl, R., Ellenbogen, K., & Erduran, S. (1999). Understanding dialogic argumentation. In Annual meeting of the American Educational Research Association: On the threshold of the 21st century: Challenges and opportunities. Montreal: American Educational Research Association.

  24. Duschl, R. A., & Osborne, J. (2002). Supporting and promoting argumentation discourse in science education. Studies in Science Education, 38(1), 39–72.

    Article  Google Scholar 

  25. Erduran, S., & Jiménez-Aleixandre, M. P. (2008). Argumentation in science education. Berlin: Springer.

    Google Scholar 

  26. Erduran, S., Simon, S., & Osborne, J. (2004). Tapping into argumentation: Developments in the application of Toulmin’s argument pattern for studying science discourse. Science Education, 88(6), 915–933.

    Article  Google Scholar 

  27. Evagorou, M., & Osborne, J. (2013). Exploring young students’ collaborative argumentation within a socioscientific issue. Journal of Research in Science Teaching, 50(2), 209–237.

    Article  Google Scholar 

  28. Felton, M., & Kuhn, D. (2001). The development of argumentative discourse skill. Discourse Processes, 32(2–3), 135–153.

    Article  Google Scholar 

  29. Furió, C., & Domínguez, C. (2007). Problemas históricos y dificultades conceptuales de los estudiantes en la conceptualización de sustancia y compuesto químico. [Historical problems and students’ difficulties to the conceptualization of chemical substance and compound]. Enseñanza de las Ciencias, 25(2), 241–258.

    Google Scholar 

  30. Hefter, M. H., Berthold, K., Renkl, A., Riess, W., Schmid, S., & Fries, S. (2014). Effects of a training intervention to foster argumentation skills while processing conflicting scientific positions. Instructional Science, 42(6), 929–947.

    Article  Google Scholar 

  31. Henao, B. L., & Stipcich, M. S. (2008). Educación en ciencias y argumentación: la perspectiva de Toulmin como posible respuesta a las demandas y desafíos contemporáneos para la enseñanza de las ciencias experimentales [Education in science and argumentation: Toulmin’s perspective as a potential response to modern demands and challenges in experimental science teaching]. Revista Electrónica de Enseñanza de las Ciencias, 7(1), 47–62.

    Google Scholar 

  32. Henderson, J. B., Osborne, J., MacPherson, A., & Szu, E. (2014). A new learning progression for student argumentation in scientific contexts. In C. P. Constantinou, N. Papadouris & A. Hadjigeorgiou (Eds.), Proceedings of the ESERA 2013 conference: Science education research for evidence-based teaching and coherence in learning (pp. 726–742). Nicosia: Springer.

  33. Hennessey, G. (1991). Analysis of concept change and estatus change in sixth graders’ concepts of force and motion. Doctoral Thesis, University of Wisconsin, Madison.

  34. Hofstein, A., & Lunetta, V. N. (2004). The laboratory in science education: Foundations for the twenty-first century. Science Education, 88(1), 28–54.

    Article  Google Scholar 

  35. Iordanou, K., & Constantinou, C. P. (2014). Developing pre-service teachers’ evidence-based argumentation skills on socio-scientific issues. Learning and Instruction, 34, 42–57.

    Article  Google Scholar 

  36. Jiménez-Aleixandre, M. P. (2002). Knowledge producers or knowledge consumers? Argumentation and decision making about environmental management. International Journal of Science Education, 24(11), 1171–1190.

    Article  Google Scholar 

  37. Jiménez-Aleixandre, M. P. (2005). Simposio la construcción del discurso científico socialmente contextualizado [Symposium on the construction of the socially-contextualised scientific discourse]. In Enseñanza de las Ciencias, extra number, VII Congreso, pp. 1–6.

  38. Jiménez-Aleixandre, M. P. (2010). 10 ideas clave. Competencias en argumentación y uso de pruebas [10 Key ideas: Argumentation competencies and use of evidence]. Barcelona: Graó.

    Google Scholar 

  39. Jiménez-Aleixandre, M. P., Bugallo, A., & Duschl, R. (2000). “Doing the lesson” or “doing science” argument in high school genetics. Science Education, 84(6), 757–792.

    Article  Google Scholar 

  40. Jiménez-Aleixandre, M. P., & Díaz, J. (2003). Discurso de aula y argumentación en la clase de ciencias: cuestiones teóricas y metodológicas [Classroom discourse and argumentation in science class: Theory and method]. Enseñanza de las Ciencias, 21(3), 359–370.

    Google Scholar 

  41. Jiménez-Aleixandre, M. P., & Puig, B. (2010). Argumentación y evaluación de explicaciones causales en ciencias: el caso de la inteligencia [Argumentation and Assessment of Causal Explanations in Science: The Case of Intelligence]. Alambique, 63, 11–18.

    Google Scholar 

  42. Jonassen, H. D. (2004). Learning to solve problems. An instructional design guide. San Francisco: Pfeiffer.

    Google Scholar 

  43. Justi, R. (2006). La enseñanza de ciencias basada en la elaboración de modelos [Teaching science based on models]. Enseñanza de las Ciencias, 24(2), 173–184.

    Google Scholar 

  44. Kelly, G., & Takao, A. (2002). Epistemic levels in argument: An analysis of university oceanography students’ use of evidence in writing. Science Education, 86(3), 314–342.

    Article  Google Scholar 

  45. Kind, P. M., Kind, V., Hofstein, A., & Wilson, J. (2011). Peer argumentation in the school science laboratory-exploring effects of task features. International Journal of Science Education, 33(18), 2527–2558.

    Article  Google Scholar 

  46. Klein, P. D. (2004). Constructing scientific explanations through writing. Instructional Science, 32(3), 191–231.

    Article  Google Scholar 

  47. Kovalainen, M., & Kumpulainen, K. (2005). The discursive practice of participation in an elementary classroom community. Instructional Science, 33(3), 213–250.

    Article  Google Scholar 

  48. Kuhn, D. (1992). Thinking as argument. Harvard Educational Review, 62(2), 155–178.

    Article  Google Scholar 

  49. Kuhn, D. (1993). Science as argument: Implications for teaching and learning scientific thinking. Science Education, 77(3), 319–337.

    Article  Google Scholar 

  50. Kuhn, D. (2010). Teaching and learning science as argument. Science Education, 94(5), 810–824.

    Article  Google Scholar 

  51. Litman, C., Marple, S., Greenleaf, C., Charney-Sirott, I., Bolz, M. J., Richardson, L. K., et al. (2017). Text-based argumentation with multiple sources: A descriptive study of opportunity to learn in secondary english language arts, history, and science. Journal of the Learning Sciences, 26(1), 79–130.

    Article  Google Scholar 

  52. Llodra, J. C. (2012). Encuesta de Salud Oral en España 2010. [A survey on oral health in Spain in 2010]. RCOE, Revista del Ilustre Consejo General de Colegios de Odontólogos y Estomatólogos de España, 17(1), 13–46.

    Google Scholar 

  53. Martínez, A., & Ibáñez, O. (2006). Resolver situaciones problemáticas en genética para modificar las actitudes relacionadas con la ciencia [Solving issues in genetics to change science-related attitudes]. Enseñanza de las Ciencias, 24(2), 193–206.

    Google Scholar 

  54. Marttunen, M. (2002). Teaching argumentation in secondary school through computer based and face-to-face debate. In M. Driscoll & T. Reeves (Eds.), Proceedings of E-learn: World conference on E-learning in corporate, government, healthcare, and higher education 2002 (pp. 1862–1865). Chesapeake, VA: Association for the Advancement of Computing in Education (AACE).

  55. Marttunen, M., & Laurinen, L. (2001). Learning of argumentation skills in networked and face-to-face environments. Instructional Science, 29(2), 127–153.

    Article  Google Scholar 

  56. Marttunen, M., & Laurinen, L. (2007). Collaborative learning through chat discussions and argument diagrams in secondary school. Journal of Research on Technology in Education, 40(1), 109–126.

    Article  Google Scholar 

  57. McNeil, K. L., & Knight, A. M. (2013). Teachers’ pedagogical content knowledge of scientific argumentation: The impact of professional development on K–12 teachers. Science Education, 97(6), 936–972.

    Article  Google Scholar 

  58. Meyer, H., & Benavot, A. (2013). PISA, power, and policy: The emergence of global educational governance. Providence, RI: Symposium Books.

    Book  Google Scholar 

  59. Ministerio de Educación [Spanish Ministry of Education]. (2010). Evaluación general de diagnóstico 2009 educación primaria. cuarto curso. informe de resultados. [General assessment of diagnosis 2009 primary education. 4th year, results report]. Madrid: Ministerio de Educación.

  60. Newton, P., Driver, R., & Osborne, J. (1999). The place of argumentation in the pedagogy of school science. International Journal of Science Education, 21(5), 553–576.

    Article  Google Scholar 

  61. Nielsen, J. A. (2012). Arguing from nature: The role of ‘nature’ in students’ argumentations on a socio-scientific issue. International Journal of Science Education, 34(5), 723–744.

    Article  Google Scholar 

  62. OECD (2006a). PISA. Assessing scientific, reading and mathematical literacy: A framework for PISA 2006. Annex A, Additional Science Units. Unit 2. Tooth Decay (pp. 127–130). Brussels: OECD.

  63. OECD (2006b). PISA. Assessing scientific, reading and mathematical literacy: A framework for PISA 2006. Annex A, Additional Science Units. Unit 9. Lip Gloss (pp. 153–155). Brussels: OECD.

  64. OECD. (2016). PISA 2015 assessment and analytical framework: Science, reading, mathematic and financial literacy. Paris: OECD Publishing.

    Book  Google Scholar 

  65. Oliva, J. M., Aragón, M. M., & Cuesta, J. (2015). The competence of modelling in learning chemical change: A study with secondary school students. International Journal of Science and Mathematics Education, 13(4), 751–791.

    Article  Google Scholar 

  66. Osana, H. P., & Seymour, J. R. (2004). Critical thinking in preservice teachers: A rubric for evaluating argumentation and statistical reasoning. Educational Research and Evaluation, 10(4–6), 473–498.

    Article  Google Scholar 

  67. Osborne, J., Erduran, S., & Simon, S. (2004). Enhancing the quality of argumentation in school science. Journal of Research in Science Teaching, 41(10), 994–1020.

    Article  Google Scholar 

  68. Osborne, J. F., Henderson, J. B., MacPherson, A., Szu, E., Wild, A., & Yao, S. (2016). The development and validation of a learning progression for argumentation in science. Journal of Research in Science Teaching, 53(6), 821–846.

    Article  Google Scholar 

  69. Özçinar, H. (2015). Scaffolding computer-mediated discussion to enhance moral reasoning and argumentation quality in pre-service teachers. Journal of Moral Education, 44(2), 232–251.

    Google Scholar 

  70. Pinochet, J. (2015). El modelo argumentativo de Toulmin y la educación en ciencias: una revisión argumentada [Toulmin’s argumentative model and science education: An argued review]. Ciência & Educação (Bauru), 21(2), 307–327.

    Article  Google Scholar 

  71. Ragonis, N., & Shilo, G. (2014). Drawing analogies between logic programming and natural language argumentation texts to scaffold learners’ understanding. Journal of Information Technology Education, 13, 73–89.

    Article  Google Scholar 

  72. Revel, A., Couló, A., Erduran, S., Furman, M., Iglesia, P., & Adúriz-Bravo, A. (2005). Estudios sobre la enseñanza de la argumentación científica escolar. [Studies on teaching school scientific argumentation: Science teaching]. In Enseñanza de las Ciencias, extra number, VII Congreso, pp. 1–5.

  73. Rodríguez-Mora, F. (2016). El “consumo de agua de bebida envasada” como contexto para el desarrollo de competencias científicas. Un estudio de caso en 3er curso de la educación secundaria obligatoria [“Drinking bottled water” as a context for developing scientific competencies: A case study in 3rd year of compulsary secondary education]. Doctoral Thesis, Universidad de Málaga, Málaga

  74. Sadler, T., & Zeidler, D. (2005). Patterns of informal reasoning in the context of socioscientific decision making. Journal of Research Science Teaching, 42(1), 112–138.

    Article  Google Scholar 

  75. Sampson, V., & Blanchard, M. R. (2012). Science teachers and scientific argumentation: Trends in views and practice. Journal of Research in Science Teaching, 49(9), 1122–1148.

    Article  Google Scholar 

  76. Sanmartí, N. (coord.) (2003). Aprendre ciències tot aprenent a escriure ciència. Barcelona: Edicions 62.

  77. Sheiham, A. (2005). Identification of appropriate outcomes for an ageing population. Bulletin of World Health Organization, 83(9), 644–645.

    Google Scholar 

  78. Simonneaux, L. (2001). Role-play or debate to promote students’ argumentation and justification on an issue in animal transgenesis. International Journal of Science Education, 23(9), 903–927.

    Article  Google Scholar 

  79. Starling, T., & Lee, H. (2015). Synchronous online discourse in a technology methods course for middle and secondary prospective mathematics teachers. Contemporary Issues in Technology and Teacher Education, 15(2), 106–125.

    Google Scholar 

  80. Sutton, C. (1992). Words, science and learning. Buckingham: Open University Press.

    Google Scholar 

  81. Sutton, C. (1997). Ideas sobre la ciencia e ideas sobre el lenguaje [Ideas about science and ideas about language]. Alambique, 12, 8–32.

    Google Scholar 

  82. Taylor, C. A. (1996). Defining science: A rhetoric of demarcation. Wisconsin: The University of Wisconsin Press.

    Google Scholar 

  83. Toulmin, S. E. (1958). The uses of argument. Cambridge: Cambridge University Press.

    Google Scholar 

  84. Toulmin, S. E. (1972). Human understanding: Vol. 1. The collective use and evolution of concepts. Princeton: Princeton University Press.

  85. Toulmin, S. E. (2003). Return to reason. Cambridge: Harvard University Press.

    Google Scholar 

  86. Toulmin, S. E., Rieke, T., & Janik, A. (1979). An introduction to reasoning. New York: Macmillan.

    Google Scholar 

  87. Tsai, C. (2015). Improving students’ PISA scientific competencies through online argumentation. International Journal of Science Education, 37(2), 321–339.

    Article  Google Scholar 

  88. Tüysüz, C., Demirel, O. E., & Yildirim, B. (2013). Investigating the effects of argumentation, problem and laboratory based instruction approaches on pre-service teachers’ achievement concerning the concept of “acid and base”. Procedia - Social and Behavioral Sciences, 93, 1376–1381.

    Article  Google Scholar 

  89. Visser, J., Barach, P., Van Breda, J., & Visser, Y. L. (2007). Building the scientific mind. Learning in the perspective of complex and long-term change. Eyragues: Learning Development Institute.

    Google Scholar 

  90. Walton, D. N. (1989). Dialogue theory for critical thinking. Argumentation, 3(2), 169–184.

    Article  Google Scholar 

  91. Walton, D. N. (1990). What is reasoning? What is an argument? The Journal of Philosophy, 87(8), 399–419.

    Article  Google Scholar 

  92. Yaman, F. (2017). Effects of the science writing heuristic approach on the quality of prospective science teachers’ argumentative writing and their understanding of scientific argumentation. International Journal of Science and Mathematics Education. https://doi.org/10.1007/s10763-016-9788-9

  93. Zohar, A., & Nemet, F. (2002). Fostering students’ knowledge and argumentation skills through dilemmas in human genetics. Journal of Research in Science Teaching, 39(1), 35–62.

    Article  Google Scholar 

Download references

Acknowledgements

This work is part of the “I + D Excelencia” project “Development and evaluation of scientific competences through context based and modelling teaching approaches” case studies (EDU2013-41952-P), funded by the Spanish Ministry of Economy and Finance through its 2013 research call.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Antonio-Joaquín Franco-Mariscal.

Appendices

Annex I

Question 1: tree growth

“In the course of their development, woody stem plants grow in height and width for years. The growth in width marks the tree trunk with a ring for each year. If the trunk is cut transversely, as shown in the figure below, each of these rings can be seen with a different thickness, depending on the weather conditions of the year in question (Fig. 4). Look carefully at the tree growth rings in the figure and answer the following question: What ring corresponds to the year when weather conditions were most favourable for the tree? Justify your answer by providing evidence”.

Fig. 4
figure4

Proposal of the general diagnosis assessment 2009 for primary education from the Spanish Ministry of Education (2010)

Image in the question on tree growth.

Question 2: purity of bottled water

“This is a label found on a bottle of a bottled water brand (front and back). Read it carefully: (Fig. 5). Do you think this bottled water is “pure, truly pure water” as the label reads? Justify your answer based on the information (terms or data) given on the label”.

Fig. 5
figure5

Proposal in Rodríguez-Mora’s Doctoral Thesis (2016)

Image of the purity of bottled water activity.

Annex II

Question 3: tooth decay

“Do bacteria play an important role in tooth decay? Justify your answer” (Fig. 6).

Fig. 6
figure6

OECD (2006a)

Image in the tooth decay activity.

Annex III

Question 4: lipstick hardness

“Can we change the recipe to make it softer? Justify your answer by providing evidence” (Table 4).

Table 4 Information given in the activity on lipstick hardness (OECD 2006b)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cebrián-Robles, D., Franco-Mariscal, AJ. & Blanco-López, Á. Preservice elementary science teachers’ argumentation competence: impact of a training programme. Instr Sci 46, 789–817 (2018). https://doi.org/10.1007/s11251-018-9446-4

Download citation

Keywords

  • Argumentation competence
  • Preservice elementary science teachers
  • Rubrics
  • Assessment