Skip to main content

Advertisement

Log in

Making connections among multiple graphical representations of fractions: sense-making competencies enhance perceptual fluency, but not vice versa

  • Published:
Instructional Science Aims and scope Submit manuscript

Abstract

Prior research shows that representational competencies that enable students to use graphical representations to reason and solve tasks is key to learning in many science, technology, engineering, and mathematics domains. We focus on two types of representational competencies: (1) sense making of connections by verbally explaining how different representations map to one another, and (2) perceptual fluency that allows students to fast and effortlessly use perceptual features to make connections among representations. Because these different competencies are acquired via different types of learning processes, they require different types of instructional support: sense-making activities and fluency-building activities. In a prior experiment, we showed benefits for combining sense-making activities and fluency-building activities. In the current work, we test how to combine these two forms of instructional support, specifically, whether students should first work on sense-making activities or on fluency-building activities. This comparison allows us to investigate whether sense-making competencies enhance students’ acquisition of perceptual fluency (sense-making-first hypothesis) or whether perceptual fluency enhances students’ acquisition of sense-making competencies (fluency-first hypothesis). We conducted a lab experiment with 74 students from grades 3–5 working with an intelligent tutoring system for fractions. We assessed learning processes and learning outcomes related to representational competencies and domain knowledge. Overall, our results support the sense-making-first hypothesis, but not the fluency-first hypothesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. In addition to the assessments detailed below, we assessed eye-tracking data. Because the eye-tracking data did not yield results relevant to the research questions we investigate in this article, we do not report eye-tracking data. Results from the analysis of eye-tracking data are reported in Rau et al. (2014b).

  2. The procedure for the cued retrospective think-alouds changed midway during the experiment. The procedure change only affected the cued retrospective think-alouds (no other aspects of the experimental procedure, because the cued retrospective think-alouds came last), and it equally affected both experimental conditions. The change was necessary due to delayed arrival of eye-tracking equipment. Specifically, the first 38 (of 74) students were asked to do a retrospective think-aloud using video recordings without eye-gaze recordings. For the remaining 36 students, eye-tracking data were recorded with an unobtrusive remote eye-tracker. (Specifically, we used an SMI RED 250—which uses an infrared camera attached under a computer monitor to record eye-gaze behaviors. The interactions with the computer were no different than without the eye-tracker.) For the cued retrospective think-alouds for these 36 students, we used eye-gaze recordings as cues, following the method proposed by Van Gog et al. (2005). For each activity, the experimenter played back the recorded eye-gaze behaviors. The eye-gaze recordings depict the student’s eye-gaze as a circle, overlaid with a background-screen recording showing the student’s interactions with the problem-solving activity. In replaying the eye-gaze recording, the experimenter first explained what the eye-gaze circle shows, and then paused after each step for a think-aloud prompt. The remainder of the cued retrospective think-alouds proceeded as for the first 38 students.

  3. Tetrad, freely available at www.phil.cmu.edu/projects/tetrad, contains a causal model simulator, estimator, and over 20 model search algorithms, many of which are described and proved asymptotically reliable in Spirtes et al. (2000).

References

  • Ainsworth, S. (2006). DeFT: A conceptual framework for considering learning with multiple representations. Learning and Instruction, 16(3), 183–198. doi:10.1016/j.learninstruc.2006.03.001.

    Article  Google Scholar 

  • Ainsworth, S. (2008). How should we evaluate multimedia learning environments? In Understanding multimedia documents (pp. 249–265). New York: Springer.

  • Ainsworth, S., Bibby, P., & Wood, D. (2002). Examining the effects of different multiple representational systems in learning primary mathematics. Journal of the Learning Sciences, 11(1), 25–61. doi:10.1207/S15327809JLS1101_2.

    Article  Google Scholar 

  • Ainsworth, S., & Loizou, A. (2003). The effects of self-explaining when learning with text or diagrams. Cognitive Science: A Multidisciplinary Journal, 27(4), 669–681.

    Article  Google Scholar 

  • Airey, J., & Linder, C. (2009). A disciplinary discourse perspective on university science learning: Achieving fluency in a critical constellation of modes. Journal of Research in Science Teaching, 46(1), 27–49. doi:10.1002/tea.20265.

    Article  Google Scholar 

  • Aleven, V. (2010). Rule-based cognitive modeling for intelligent tutoring systems. In R. Nkambou, J. Bourdeau, & R. Mizoguchi (Eds.), Studies in Computational Intelligence: Vol. 308. Advances in intelligent tutoring systems (pp. 33–62). Berlin: Springer. doi:10.1007/978-3-642-14363-2_3.

  • Aleven, V. A. W. M. M., & Koedinger, K. R. (2002). An effective metacognitive strategy: Learning by doing and explaining with a computer-based Cognitive Tutor. Cognitive Science, 26(2), 147–179. doi:10.1016/S0364-0213(02)00061-7.

    Article  Google Scholar 

  • Aleven, V., McLaren, B. M., Sewall, J., & Koedinger, K. R. (2009). A new paradigm for intelligent tutoring systems: Example-tracing tutors. International Journal of Artificial Intelligence in Education, 19(2), 105–154.

    Google Scholar 

  • Aleven, V., McLaren, B. M., Sewall, J., van Velsen, M., Popescu, O., Demi, S., … Koedinger, K. R. (2016). Example-Tracing tutors: Intelligent tutor development for non-programmers. International Journal of Artificial Intelligence in Education, 26(1), 224–269. doi:10.1007/s40593-015-0088.

  • Anderson, J. R. (1983). The architecture of cognition. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Anderson, J. R., Corbett, A. T., Koedinger, K. R., & Pelletier, R. (1995). Cognitive tutors: Lessons learned. Journal of the Learning Sciences, 4(2), 167–207. doi:10.1207/s15327809jls0402_2.

    Article  Google Scholar 

  • Atkinson, R. K., Renkl, A., & Merrill, M. M. (2003). Transitioning from studying examples to solving problems: Effects of self-explanation prompts and fading worked-out steps. Journal of Educational Psychology, 95(4), 774–783. doi:10.1037/0022-0663.95.4.774.

    Article  Google Scholar 

  • Baetge, I., & Seufert, T. (2010). Effects of support for coherence formation in computer science education. Paper presented at the EARLI SIG 6/7, Ulm.

  • Berthold, K., Eysink, T. H. S., & Renkl, A. (2008). Assisting self-explanation prompts are more effective than open prompts when learning with multiple representations. Instructional Science, 27(4), 345–363. doi:10.1007/s11251-008-9051-z.

    Google Scholar 

  • Berthold, K., & Renkl, A. (2009). Instructional aids to support a conceptual understanding of multiple representations. Journal of Educational Research, 101(1), 70–87. doi:10.1037/a0013247.

    Google Scholar 

  • Bieda, K. N., & Nathan, M. J. (2009). Representational disfluency in algebra: Evidence from student gestures and speech. ZDM, 41(5), 637–650.

    Article  Google Scholar 

  • Bodemer, D., & Faust, U. (2006). External and mental referencing of multiple representations. Computers in Human Behavior, 22(1), 27–42. doi:10.1016/j.chb.2005.01.005.

    Article  Google Scholar 

  • Bodemer, D., Ploetzner, R., Bruchmüller, K., & Häcker, S. (2005). Supporting learning with interactive multimedia through active integration of representations. Instructional Science, 33(1), 73–95. doi:10.1007/s11251-004-7685-z.

    Article  Google Scholar 

  • Bodemer, D., Ploetzner, R., Feuerlein, I., & Spada, H. (2004). The active integration of information during learning with dynamic and interactive visualisations. Learning and Instruction, 14(3), 325–341. doi:10.1016/j.learninstruc.2004.06.006.

    Article  Google Scholar 

  • Charalambous, C. Y., & Pitta-Pantazi, D. (2007). Drawing on a theoretical model to study students’ understandings of fractions. Educational Studies in Mathematics, 64(3), 293–316. doi:10.1007/s10649-006-9036-2.

    Article  Google Scholar 

  • Chickering, D. M. (2002). Optimal structure identification with greedy search. Journal of Machine Learning Research, 3, 507–554. doi:10.1162/153244303321897717.

    Google Scholar 

  • Cramer, K. (2001). Using models to build an understanding of functions. Mathematics teaching in the middle school, 6(5), 310–318.

    Google Scholar 

  • de Jong, T., Ainsworth, S., Dobson, M., Van der Meij, J., Levonen, J., Reimann, P., … Swaak, J. (1998). Acquiring knowledge in science and mathematics: The use of multiple representations in technology-based learning environments. In M. W. Van Someren, W. Reimers, H. P. A. Boshuizen, & T. de Jong (Eds.), Learning with multiple representations (pp. 9–41). Bingley: Emerald Group.

  • DeLoache, J. S. (2000). Dual representation and young children’s use of scale models. Child Development, 71(2), 329–338. doi:10.1111/1467-8624.00148.

    Article  Google Scholar 

  • Dreher, A., & Kuntze, S. (2014). Teachers facing the dilemma of multiple representations being aid and obstacle for learning: Evaluations of tasks and theme-specific noticing. Journal für Mathematik-Didaktik. doi:10.1007/s13138-014-0068-3.

    Google Scholar 

  • Dreyfus, H., & Dreyfus, S. E. (1986). Five steps from novice to expert. In Mind over machine: The power of human intuition and expertise in the era of the computer (pp. 16–51). New York: The Free Press.

  • Eilam, B., & Ben-Peretz, M. (2012). Teaching, learning, and visual literacy: The dual role of visual representation. New York: Cambridge University Press.

    Book  Google Scholar 

  • Gadgil, S., Nokes-Malach, T. J., & Chi, M. T. (2012). Effectiveness of holistic mental model confrontation in driving conceptual change. Learning and Instruction, 22(1), 47–61. doi:10.1016/j.learninstruc.2011.06.002.

    Article  Google Scholar 

  • Gentner, D. (1983). Structure-mapping: A theoretical framework for analogy. Cognitive Science, 7(2), 155–170. doi:10.1207/s15516709cog0702_3.

    Article  Google Scholar 

  • Gentner, D., Loewenstein, J., & Thompson, L. (2003). Learning and transfer: A general role for analogical encoding. Journal of Educational Psychology, 95(2), 393–405. doi:10.1037/0022-0663.95.2.393.

    Article  Google Scholar 

  • Gibson, E. J. (1969). Principles of perceptual learning and development. New York: Prentice Hall.

    Google Scholar 

  • Gibson, E. J. (2000). Perceptual learning in development: Some basic concepts. Ecological Psychology, 12(4), 295–302. doi:10.1207/S15326969ECO1204_04.

    Article  Google Scholar 

  • Gibson, B., Zhu, X., Rogers, T., Kalish, C., & Harrison, J. (2010). Humans learn using manifolds, reluctantly. In Advances in neural information processing systems (Vol. 24).

  • Gilbert, J. K. (2005). Visualization: A metacognitive skill in science and science education. In J. K. Gilbert (Ed.), Visualization: Theory and practice in science education (pp. 9–27). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Gilbert, J. K. (2008). Visualization: An emergent field of practice and inquiry in science education. In J. K. Gilbert, M. Reiner, & M. B. Nakhleh (Eds.), Visualization: Theory and practice in science education (Vol. 3, pp. 3–24). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Glenberg, A. M., Wilkinson, A. C., & Epstein, W. (1982). The illusion of knowing: Failure in the self-assessment of comprehension. Memory & Cognition, 10(6), 597–602. doi:10.3758/BF03202442.

    Article  Google Scholar 

  • Goldstone, R. L., & Barsalou, L. W. (1998). Reuniting perception and conception. Cognition, 65(2), 231–262. doi:10.1016/S0010-0277(97)00047-4.

    Article  Google Scholar 

  • Gutwill, J. P., Frederiksen, J. R., & White, B. Y. (1999). Making their own connections: Students’ understanding of multiple models in basic electricity. Cognition and Instruction, 17(3), 249–282. doi:10.1207/S1532690XCI1703_2.

    Article  Google Scholar 

  • Johnson, C. I., & Mayer, R. E. (2010). Applying the self-explanation principle to multimedia learning in a computer-based game-like environment. Computers in Human Behavior, 26(6), 1246–1252.

    Article  Google Scholar 

  • Jones, L. L., Jordan, K. D., & Stillings, N. A. (2005). Molecular visualization in chemistry education: The role of multidisciplinary collaboration. Chemistry Education Research and Practice, 6(3), 136–149. doi:10.1039/B5RP90005K.

    Article  Google Scholar 

  • Kahneman, D. (2003). A perspective on judgment and choice—Mapping bounded rationality. American Psychologist, 9, 697–720. doi:10.1037/0003-066X.58.9.697.

    Article  Google Scholar 

  • Kaput, J. (1987). Towards a theory of symbol use in mathematics. In C. Janvier (Ed.), Problems of representations in the teaching and learning of mathematics (pp. 159–195). Mahwah, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Kellman, P. J., & Massey, C. M. (2013). Perceptual learning, cognition, and expertise. In B. H. Ross (Ed.), The psychology of learning and motivation (Vol. 558, pp. 117–165). New York: Elsevier Academic Press.

    Google Scholar 

  • Kellman, P. J., Massey, C. M., Roth, Z., Burke, T., Zucker, J., Saw, A., … Wise, J. (2008). Perceptual learning and the technology of expertise: Studies in fraction learning and algebra. Pragmatics & Cognition, 16(2), 356–405. doi:10.1075/pc.16.2.07kel.

  • Kellman, P. J., Massey, C. M., & Son, J. Y. (2009). Perceptual learning modules in mathematics: Enhancing students’ pattern recognition, structure extraction, and fluency. Topics in Cognitive Science, 2(2), 285–305. doi:10.1111/j.1756-8765.2009.01053.x.

    Article  Google Scholar 

  • Kieren, T. E. (1993). Rational and fractional numbers: From quotient fields to recursive understanding. In T. P. Carpenter, E. Fennema, & T. A. Romberg (Eds.), Rational numbers: An integration of research. Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Koedinger, K. R., Baker, R., Cunningham, K., Skogsholm, A., Leber, B., & Stamper, J. (2010). A data repository for the EDM community: The PSLC Data-Shop. In C. Romero (Ed.), Handbook of educational data mining (pp. 10–12). Boca Raton, FL: CRC Press.

    Google Scholar 

  • Koedinger, K. R., Corbett, A. T., & Perfetti, C. (2012). The knowledge-learning-instruction framework: Bridging the science-practice chasm to enhance robust student learning. Cognitive Science, 36(5), 757–798. doi:10.1111/j.1551-6709.2012.01245.x.

    Article  Google Scholar 

  • Kozma, R., & Russell, J. (2005). Students becoming chemists: Developing representational competence. In J. Gilbert (Ed.), Visualization in science education (pp. 121–145). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Landis, J. R., & Koch, G. G. (1977). The measurement of observer agreement for categorical data. Biometrics, 33, 159–174.

    Article  Google Scholar 

  • Lindgren, R. (2012). Generating a learning stance through perspective-taking in a virtual environment. Computers in Human Behavior, 28(4), 1130–1139. doi:10.1016/j.chb.2012.01.021.

    Article  Google Scholar 

  • Lowe, R. K. (1993). Constructing a mental representation from an abstract technical diagram. Learning and Instruction, 3(3), 157–179. doi:10.1016/0959-4752(93)90002-H.

    Article  Google Scholar 

  • Lowe, R. K. (1994). Selectivity in diagrams: Reading beyond the lines. Educational Psychology, 14(4), 467–491. doi:10.1080/0144341940140408.

    Article  Google Scholar 

  • Massey, C. M., Kellman, P. J., Roth, Z., & Burke, T. (2011). Perceptual learning and adaptive learning technology—Developing new approaches to mathematics learning in the classroom. In N. L. Stein & S. W. Raudenbush (Eds.), Developmental cognitive science goes to school (pp. 235–249). New York: Routledge.

    Google Scholar 

  • Matthews, P. G., & Chesney, D. L. (2015). Fractions as percepts? Exploring cross-format distance effects for fractional magnitudes. Cognitive Psychology, 78, 28–56. doi:10.1016/j.cogpsych.2015.01.006.

    Article  Google Scholar 

  • McElhaney, K. W., Chang, H. Y., Chiu, J. L., & Linn, M. C. (2015). Evidence for effective uses of dynamic visualisations in science curriculum materials. Studies in Science Education, 51(1), 49–85. doi:10.1080/03057267.2014.984506.

    Article  Google Scholar 

  • Nathan, M. J., Walkington, C., Boncoddo, R., Pier, E. L., Williams, C. C., & Alibali, M. W. (2014). Actions speak louder with words: The roles of action and pedagogical language for grounding mathematical reasoning. Learning and Instruction, 33, 182–193. doi:10.1016/j.learninstruc.2014.07.001.

    Article  Google Scholar 

  • National Council of Teachers of Mathematics, NCTM. (2000). Principles and standards for school mathematics. Reston, VA: National Council of Teachers of Mathematics.

  • National Council of Teachers of Mathematics, NCTM. (2006). Curriculum focal points for prekindergarten through grade 8 mathematics: A quest for coherence. Reston, VA: National Council of Teachers of Mathematics.

  • National Mathematics Advisory Board Panel, NMAP. (2008). Foundations for success: Report of the National Mathematics Advisory Board Panel. Washington, DC: U.S. Government Printing Office.

  • National Research Council, NRC. (2006). Learning to think spatially. Washington, DC: National Academies Press.

    Google Scholar 

  • Ohlsson, S. (2008). Computational models of skill acquisition. In R. Sun (Ed.), The Cambridge handbook of computational psychology (pp. 359–395). New York: Cambridge University Press.

    Chapter  Google Scholar 

  • Ozcelik, E., Karakus, T., Kursun, E., & Cagiltay, K. (2009). An eye-tracking study of how color coding afffects multimedia learning. Computers & Education, 53(2), 445–453. doi:10.1016/j.compedu.2009.03.002.

    Article  Google Scholar 

  • Özgün-Koca, S. A. (2008). Ninth grade students studying the movement of fish to learn about linear relationships: The use of video-based analysis software in mathematics classrooms. The Mathematics Educator, 18(1), 15–25.

    Google Scholar 

  • Pape, S. J., & Tchoshanov, M. A. (2001). The role of representation (s) in developing mathematical understanding. Theory into Practice, 40(2), 118–127. doi:10.1207/s15430421tip4002_6.

    Article  Google Scholar 

  • Patel, Y., & Dexter, S. (2014). Using multiple representations to build conceptual understanding in science and mathematics. In M. Searson & M. Ochoa (Eds.), Proceedings of society for information technology & teacher education international conference 2014 (Vol. 2014, pp. 1304–1309). Chesapeake, VA: AACE.

    Google Scholar 

  • Post, T. R., Behr, M. J., & Lesh, R. (1982). Interpretations of rational number concepts. In L. Silvey & J. R. Smart (Eds.), Mathematics for the middle grades (pp. 5–9). Reston, VA: National Council of Teachers of Mathematics.

    Google Scholar 

  • Rau, M. A., Aleven, V., Rummel, N., & Rohrbach, S. (2013). Why interactive learning environments can have it all: Resolving design conflicts between conflicting goals. In Proceedings of the SIGCHI 2013 ACM conference on human factors in computing systems (pp. 109–118). New York: ACM.

  • Rau, M. A., Aleven, V., Rummel, N., & Pardos, Z. (2014a). How should intelligent tutoring systems sequence multiple graphical representations of fractions? A multi-methods study. International Journal of Artificial Intelligence in Education, 24(2), 125–161. doi:10.1007/s40593-013-0011-7.

    Article  Google Scholar 

  • Rau, M. A., Aleven, V., & Rummel, N. (2014b). Sequencing sense-making and fluency-building support for connection making between multiple graphical representations. In J. L. Polman, E. A. Kyza, D. K. O'Neill, I. Tabak, W. R. Penuel, A. S. Jurow, et al. (Eds.), Learning and becoming in practice: The international conference of the learning sciences (ICLS) 2014 (Vol. 2, pp. 977–981). Boulder, CO: International Society of the Learning Sciences.

  • Rau, M. A., Aleven, V., & Rummel, N. (2015). Successful learning with multiple graphical representations and self-explanation prompts. Journal of Educational Psychology, 107(1), 30–46. doi:10.1037/a0037211.

  • Rau, M. A. (2016). Conditions for the effectiveness of multiple visual representations in enhancing STEM learning. Educational Psychology Review. doi:10.1007/s10648-016-9365-3.

  • Rau, M. A., Aleven, V., & Rummel, N. (2016). Supporting students in making sense of connections and in becoming perceptually fluent in making connections among multiple graphical representations. Journal of Educational Psychology. doi:10.1037/edu0000145.

  • Renkl, A. (2005). The worked-out example principle in multimedia learning. In R. Mayer (Ed.), The Cambridge handbook of multimedia learning (pp. 229–246). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Richman, H. B., Gobet, F., Staszewski, J. J., & Simon, H. A. (1996). Perceptual and memory processes in the acquisition of expert performance: The EPAM model. In K. A. Ericsson (Ed.), The road to excellence? The acquisition of expert performance in the arts and sciences, sports and games (pp. 167–187). Mahwah, NJ: Erlbaum Associatees.

    Google Scholar 

  • Schnotz, W. (2005). An integrated model of text and picture comprehension. In R. E. Mayer (Ed.), The Cambridge handbook of multimedia learning (pp. 49–69). New York: Cambridge University Press.

    Chapter  Google Scholar 

  • Schnotz, W. (2014). An integrated model of text and picture comprehension. In R. E. Mayer (Ed.), The Cambridge handbook of multimedia learning (2nd ed., pp. 72–103). New York: Cambridge University Press.

    Chapter  Google Scholar 

  • Seufert, T. (2003). Supporting coherence formation in learning from multiple representations. Learning and Instruction, 13(2), 227–237. doi:10.1016/S0959-4752(02)00022-1.

    Article  Google Scholar 

  • Seufert, T., & Brünken, R. (2006). Cognitive load and the format of instructional aids for coherence formation. Applied Cognitive Psychology, 20, 321–331. doi:10.1002/acp.1248.

    Article  Google Scholar 

  • Siegler, R. S., Carpenter, T., Fennell, F., Geary, D., Lewis, J., Okamoto, Y., … Wray, J. (2010). Developing effective fractions instruction: A practice guide. Washington, DC: National Center for Education Evaluation and Regional Assistance, Institute of Education Sciences, U.S. Department of Education.

  • Spirtes, P., Glymour, C., & Scheines, R. (2000). Causation, prediction, and search (2nd ed.). Cambridge, MA: MIT.

    Google Scholar 

  • Stern, E., Aprea, C., & Ebner, H. G. (2003). Improving cross-content transfer in text processing by means of active graphical representation. Learning and Instruction, 13(2), 191–203. doi:10.1016/S0959-4752(02)00020-8.

    Article  Google Scholar 

  • Taber, K. S. (2013). Revisiting the chemistry triplet: Drawing upon the nature of chemical knowledge and the psychology of learning to inform chemistry education. Chemistry Education Research and Practice, 14(2), 156–168. doi:10.1039/C3RP00012E.

    Article  Google Scholar 

  • Uttal, D. H., & O’Doherty, K. (2008). Comprehending and learning from ‘visualizations’: A developmental perspective. In J. Gilbert (Ed.), Visualization: Theory and practice in science education (pp. 53–72). Dordrecht: Springer.

    Chapter  Google Scholar 

  • van der Meij, J., & de Jong, T. (2006). Supporting students’ learning with multiple representations in a dynamic simulation-based learning environment. Learning and Instruction, 16(3), 199–212. doi:10.1016/j.learninstruc.2006.03.007.

    Article  Google Scholar 

  • van der Meij, J., & de Jong, T. (2011). The effects of directive self-explanation prompts to support active processing of multiple representations in a simulation-based learning environment. Journal of Computer Assisted learning, 27(5), 411–423. doi:10.1111/j.1365-2729.2011.00411.x.

    Article  Google Scholar 

  • Van Gog, T., Paas, F., Van Merriënboer, J. J. G., & Witte, P. (2005). Uncovering the problem-solving process: Cued retrospective reporting versus concurrent and retrospective reporting. Journal of Experimental Psychology, 11, 237–244. doi:10.1037/1076-898X.11.4.237.

    Google Scholar 

  • VanLehn, K. (2011). The relative effectiveness of human tutoring, intelligent tutoring systems and other tutoring systems. Educational Psychologist, 46(4), 197–221. doi:10.1080/00461520.2011.611369.

    Article  Google Scholar 

  • Wertsch, J. V., & Kazak, S. (2011). Saying more than you know in instructional settings. In T. Koschmann (Ed.), Theories of learning and studies of instructional practice (pp. 153–166). New York: Springer.

    Chapter  Google Scholar 

  • Wise, J. A., Kubose, T., Chang, N., Russell, A., & Kellman, P. J. (2000). Perceptual learning modules in mathematics and science instruction. In P. Hoffman & D. Lemke (Eds.), Teaching and learning in a network world (pp. 169–176). Amsterdam: IOS Press.

    Google Scholar 

  • Wu, H. K., & Shah, P. (2004). Exploring visuospatial thinking in chemistry learning. Science Education, 88(3), 465–492. doi:10.1002/sce.10126.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation, REESE-21851-1-1121307 and by IES, NCER-CASL Award No. R305A120734. We thank Richard Scheines, Ken Koedinger, Brian Junker, Jay Raspat, Michael Ringenberg, Angela McCarthy, Siyan Zhao, Lavender Yi, Jessica Han, Lisa Kwon, the Datashop and CTAT teams.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martina A. Rau.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 569 kb)

Appendix

Appendix

See Figs. A1, A2 and A3.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rau, M.A., Aleven, V. & Rummel, N. Making connections among multiple graphical representations of fractions: sense-making competencies enhance perceptual fluency, but not vice versa. Instr Sci 45, 331–357 (2017). https://doi.org/10.1007/s11251-017-9403-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11251-017-9403-7

Keywords

Navigation