Skip to main content
Log in

Effectiveness of visual and verbal prompts in training visuospatial processing skills in school age children

  • Published:
Instructional Science Aims and scope Submit manuscript

An Erratum to this article was published on 27 May 2014

Abstract

Recent decades have witnessed a growing interest in intervention-based assessment to promote and enhance children’s learning. In this study, we explored the potential effect of an experimental visual–spatial intervention procedure and possible training benefits of two prompting modalities: one group received training with verbal and visual prompts, a second group training with visual prompts only, while a third, control group did not receive any training. The two training methods led to significant improvements of performance in visuospatial tasks as compared to control group, and they did so about equally well. Our findings provide evidence for the efficiency and benefits of interventions targeting visuospatial processing skills. The success of such interventions does not seem to be bounded by age or gender, and it seems that visual cues are particularly effective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allen, G. L. (2003). Functional families of spatial abilities: Poor relations and rich prospects. International Journal of Testing, 3(3), 251–262.

    Article  Google Scholar 

  • Archer, A., & Hughes, C. A. (2011). Explicit instruction: Efficient and effective teaching. New York, NY: Guilford Publications.

    Google Scholar 

  • Assel, M. A., Landry, S. H., Swank, P., Smith, K. E., & Steelman, L. M. (2003). Precursors to mathematical skills: Examining the roles of visual–spatial skills, executive processes, and parenting factors. Applied Developmental Science, 7, 27–38.

    Article  Google Scholar 

  • Black, P., & Wiliam, D. (1998). Assessment and classroom learning. Assessment in Education, 5(1), 7–74.

    Article  Google Scholar 

  • Bohning, G., & Althouse, J. K. (1997). Using tangrams to teach geometry to young children. Early Childhood Education Journal, 24(4), 239–242.

    Article  Google Scholar 

  • Butcher, K. R. (2006). Learning from text with diagrams: Promoting mental model development and inference generation. Journal of Educational Psychology, 98(1), 182–197.

    Article  Google Scholar 

  • Carr, N. (2008). The big switch: Rewiring the world, from Edison to Google. New York: Norton.

    Google Scholar 

  • Carr, N. (2010). The shallows: What the internet is doing to our brains. New York: Norton.

    Google Scholar 

  • Carroll, J. B. (1993). Human cognitive abilities: A survey of factor-analytic studies. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Cheng, Y. L., & Mix, K. S. (2012). Spatial training improves children’s mathematics ability. Journal of Cognition and Development,. doi:10.1080/15248372.2012.725186.

    Google Scholar 

  • Cortiella, C. (2011). The state of learning disabilities. New York: National Center for Learning Disabilities. Retrieved from http://www.ncld.org/images/stories/OnCapitolHill/PolicyRelatedPublications/stateofld/2011_state_of_ld_final.pdf.

  • D’Oliveira, T. (2004). Dynamic spatial ability: An exploratory analysis and a confirmatory study. The International Journal of Aviation Psychology, 14, 19–38.

    Article  Google Scholar 

  • Dehaene, S., Izard, V., Pica, P., & Spelke, E. (2006). Core knowledge of geometry in an Amazonian indigene group. Science, 311, 381–384.

    Article  Google Scholar 

  • Dye, M. W. G., Hauser, P. C., & Bavelier, D. (2008). Visual skills and cross-modal plasticity in deaf readers: Possible implications for acquiring meaning from print. Annals of the New York Academy of Sciences, 1145, 71–82.

    Article  Google Scholar 

  • Eliot, J., & Smith, I. M. (1983). An international directory of spatial tests. Windsor Berkshire: NFER-Nelson.

    Google Scholar 

  • Flanagan, D. P., & Kaufman, A. S. (2004). Essentials of WISC-IV assessment. Hoboken, NJ: Wiley.

    Google Scholar 

  • Ford, B. E. (2003). Tangrams: The magnificent seven piece puzzle. Vallejo, CA: Tandora’s Box Press.

    Google Scholar 

  • Foster, T. E. (2007). The legend of the tangram prince. Charleston, SC: BookSurge.

    Google Scholar 

  • Fuchs, D., & Fuchs, L. (2006). Introduction to response to intervention: What, why, and how valid is it? Reading Research Quarterly, 41, 93–99.

    Article  Google Scholar 

  • Gardner, H. (1983). Frames of mind: The theory of multiple intelligences. New York: Basic Books.

    Google Scholar 

  • Gardner, M. F. (1996). Test of visual perceptual skills (n-m) revised. Hydesville, CA: Psychological and Educational.

    Google Scholar 

  • Grigorenko, E. L. (2009). Dynamic assessment and response to intervention: Two sides of one coin. Journal of Learning Disabilities, 42, 111–132.

    Article  Google Scholar 

  • Grigorenko, E. L., & Sternberg, R. J. (1997). Styles of thinking, abilities, and academic performance. Exceptional Children, 63(3), 295–312.

    Google Scholar 

  • Grissmer, D., Grimm, K., Aiyer, S., Murrah, W., & Steele, J. (2010). Fine motor skills and early comprehension of the world: Two new school readiness indicators. Developmental Psychology, 46(5), 1008–1017.

    Article  Google Scholar 

  • Halpern, D. F. (2012). Sex differences in cognitive abilities (4th ed.). New York: Psychology.

    Google Scholar 

  • Hattie, J., & Timperley, H. (2007). The power of feedback. Review of Educational Research, 77(1), 81–112.

    Article  Google Scholar 

  • Haywood, H., & Lidz, C. (2007). Dynamic assessment in practice: Clinical and educational applications. New York: Cambridge University Press.

    Google Scholar 

  • Hegarty, M., & Just, M. A. (1993). Constructing mental models of machines from text and diagrams. Journal of Memory and Language, 32, 717–742.

    Article  Google Scholar 

  • Hegarty, M., Keehner, M., Cohen, C., Montello, D. R., & Lippa, Y. (2007). The role of spatial cognition in medicine: Applications for selecting and training professionals. In G. Allen (Ed.), Applied spatial cognition (pp. 285–315). Mahwah, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Hegarty, M., & Waller, D. (2004). A dissociation between mental rotation and perspective-taking spatial abilities. Intelligence, 32, 175–191.

    Article  Google Scholar 

  • Hegarty, M., & Waller, D. (2005). Individual differences in spatial abilities. In P. Shah & A. Miyake (Eds.), Handbook of visuospatial thinking (pp. 121–169). New York: Cambridge University Press.

    Chapter  Google Scholar 

  • Holmes, J., Adams, J. W., & Hamilton, C. (2008). The relationship between visuo-spatial sketchpad capacity and children’s mathematical skills. European Journal of Cognitive Psychology, 20, 272–289.

    Article  Google Scholar 

  • Jeltova, I., Birney, D., Fredine, N., Jarvin, L., Sternberg, R. J., & Grigorenko, E. L. (2007). Dynamic assessment as a process-oriented assessment in educational settings. Advances in Speech-Language Pathology, 9, 1–13.

    Article  Google Scholar 

  • Kalyuga, S., Ayres, P., Chandler, P., & Sweller, J. (2003). The expertise reversal effect. Educational Psychologist, 38(1), 23–31.

    Article  Google Scholar 

  • Kaufman, S. B. (2007). Sex differences in mental rotation and spatial visualization ability: Can they be accounted for by differences in working memory capacity? Intelligence, 35, 211–223.

    Article  Google Scholar 

  • Lee, J., Lee, J. O., & Collins, C. (2009). Enhancing children’s spatial sense using tangrams. Childhood Education, 86(2), 92–94.

    Article  Google Scholar 

  • Linn, M. C., & Petersen, A. C. (1985). Emergence and characterisation of gender differences in spatial abilities: A meta-analysis. Child Development, 56, 1479–1498.

    Article  Google Scholar 

  • Lohman, D. F. (1988). Spatial abilities as traits, processes, and knowledge. In R. J. Sternberg (Ed.), Advances in the psychology of human intelligence (pp. 181–248). Hillside, NJ: Erlbaum.

    Google Scholar 

  • Lovett, A., & Forbus, K. (2010). Shape is like space: Modeling shape representation as a set of qualitative spatial relations. Guilford Publications. Proceedings of the AAAI spring symposium on cognitive shape processing. Palo Alto. Retrieved from www.cs.northwestern.edu/~aml758/Papers/ShapeRepresentationComparison.pdf.

  • Lubinski, D. (2010). Spatial ability and STEM: A sleeping giant for talent identification and development. Personality and Individual Differences, 49, 344–351.

    Article  Google Scholar 

  • Mathewson, J. H. (1999). Visual–spatial thinking: An aspect of science overlooked by educators. Science Education, 83, 33–54.

    Article  Google Scholar 

  • Mayer, R. E. (2005). Cognitive theory of multimedia learning. In R. E. Mayer (Ed.), The Cambridge handbook of multimedia learning (pp. 31–48). New York, NY: Cambridge University Press.

    Chapter  Google Scholar 

  • Mayer, R. E., & Wittrock, R. C. (2006). Problem solving. In P. A. Alexander & P. H. Winne (Eds.), Handbook of educational psychology (2nd ed., pp. 287–304). Mahwah, NJ: Erlbaum.

    Google Scholar 

  • Moreno, R. (2010). Cognitive load theory: More food for thought. Instructional Science, 38(2), 135–141.

    Article  Google Scholar 

  • Moreno, R., & Mayer, R. E. (1999). Cognitive principles of multimedia learning: The role of modality and contiguity. Journal of Educational Psychology, 91(2), 358–368.

    Article  Google Scholar 

  • National Council of Teacher’s Mathematics. (2003). Developing geometry understandings and spatial skills through puzzle like problems with tangrams: Tangram challenges. Retrieved from www.nctm.org.

  • National Council of Teachers of Mathematics. (2010). Curriculum focal points for prekindergarten through grade 8: A quest for coherence. Reston, VA: NCTM. Retrieved from www.nctm.org.

  • National Research Council. (2006). Learning to think spatially: GIS as support system in K-12 curriculum. Washington, DC: National Academies Press.

    Google Scholar 

  • Newcombe, N. S., & Learmonth, A. E. (2005). Development of spatial competence. In P. Shah & A. Miyake (Eds.), Handbook of visuospatial thinking (pp. 213–256). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Olina, Z., Reiser, R., Huang, X., Lim, J., & Park, S. (2006). Problem format and presentation sequence: Effects on learning and mental effort among U.S. high school students. Applied Cognitive Psychology, 20, 299–309.

    Article  Google Scholar 

  • Paas, F. G. W. C., Renkl, A., & Sweller, J. (2004). Cognitive load theory: Instructional implications of the interaction between information structures and cognitive architecture. Instructional Science, 32, 1–8.

    Article  Google Scholar 

  • Paivio, A. (1986). Mental representations: A dual coding approach. Oxford: Oxford University Press.

    Google Scholar 

  • Passolunghi, M. C., & Mammuarella, I. (2010). Spatial and visual working memory ability in children with difficulties in arithmetic word problem solving. European Journal of Cognitive Psychology, 22, 944–963.

    Article  Google Scholar 

  • Paul, R. (2007). Language disorders from infancy through adolescence (3rd ed.). St. Louis: Mosby.

    Google Scholar 

  • Peter, M., Gluck, J., & Beiglbock, W. (2010). Map understanding as a developmental marker in childhood. Journal of Individual Differences, 31, 64–67.

    Article  Google Scholar 

  • Piaget, J. (1977). In H. E. Gruber & J.J. Vonèche (Eds.), The essential Piaget. New York: Basic Books.

  • Rasmussen, C., & Bisanz, J. (2005). Representation and working memory in early arithmetic. Journal of Experimental Child Psychology, 91, 137–157.

    Article  Google Scholar 

  • Raven, J., Raven, J. C., & Court, J. H. (1998, updated 2003). Manual for Raven’s Progressive Matrices and Vocabulary Scales. San Antonio, TX: Harcourt Assessment.

  • Resing, W. C. M., & Elliott, J. G. (2011). Dynamic testing with tangible electronics: Measuring children’s change in strategy use with a series completion task. British Journal of Educational Psychology, 81, 579–605.

    Article  Google Scholar 

  • Resing, W. C. M., Steijn, W. M. P., Xenidou-Dervou, I., Stevenson, C. E., & Elliott, J. G. (2011). Dynamic testing with an electronic console: Do children listen to the computer? Journal of Cognitive Education and Psychology, 10(2), 178–194.

    Article  Google Scholar 

  • Schnotz, W., & Kurschner, C. (2007). A reconsideration of cognitive load theory. Educational Psychology Review, 19(4), 469–508.

    Article  Google Scholar 

  • Shute, V. J. (2008). Focus on formative feedback. Review of Educational Research, 78(1), 153–189.

    Article  Google Scholar 

  • Slocum, J., Botermans, J., Gebhardt, D., Ma, M., Ma, X., Raizer, H., et al. (2003). The tangram book. New York: Sterling Publishing Co.

    Google Scholar 

  • Soderstrom, N. C., & Bjork, R. A. (in press). Learning versus performance. In D. S. Dunn (Ed.), Oxford bibliographies online: Psychology. New York: Oxford University Press. Retrieved from http://bjorklab.psych.ucla.edu/pubs/Soderstrom_Bjork_Learning_versus_Performance.pdf.

  • Sophian, C. (2000). Perceptions of proportionality in young children: Matching spatial ratios. Cognition, 75, 145–170.

    Article  Google Scholar 

  • Sternberg, R. J., & Grigorenko, E. L. (2002). Dynamic testing: The nature and measurement of learning potential. New York: Cambridge University Press.

    Google Scholar 

  • Sternberg, R. J. (2003). Contemporary theories of intelligence. In W. M. Reynolds & G. E. Miller (Eds.), Comprehensive handbook of psychology: Educational psychology (Vol. 7, pp. 23–46). New York: Wiley.

    Google Scholar 

  • Sutton, K. J., & Williams, A. P. (2007). Spatial cognition and its implications for design. Hong Kong: International Association of Societies of Design Research.

    Google Scholar 

  • Terlecki, M. S., Newcombe, N. S., & Little, M. (2008). Durable and generalized effects of spatial experience on mental rotation: Gender differences in growth patterns. Applied Cognitive Psychology, 22, 996–1013.

    Article  Google Scholar 

  • Tzuriel, D., & Egozi, G. (2010). Gender differences in spatial ability of young children. Child Development, 81, 1417–1430.

    Article  Google Scholar 

  • Uttal, D. H., Meadow, N. G., Tipton, E., Hand, L. L., Alden, A. R., Warren, C., et al. (2012). The malleability of spatial skills: A meta-analysis of training studies. Psychological Bulletin,. doi:10.1037/a0028446.

    Google Scholar 

  • Van Garderen, D., & Montague, M. (2003). Visual–spatial representation, mathematical problem solving, and students of varying abilities. Learning Disabilities Research & Practice, 18, 246–254.

    Article  Google Scholar 

  • Van Hiele, P. M. (1983). Structure and insight. Dordrecht: Kluwer Academic.

    Google Scholar 

  • Wai, J., Lubinski, D., & Benbow, C. P. (2009). Spatial ability for STEM domains: Aligning over fifty years of cumulative psychological knowledge solidifies its importance. Journal of Educational Psychology, 101, 817–835.

    Article  Google Scholar 

  • Webb, R. M., Lubinski, D., & Benbow, C. P. (2007). Spatial ability: A neglected dimension in talent searches for intellectually precocious youth. Journal of Educational Psychology, 99, 397–420.

    Article  Google Scholar 

  • Willcutt, E. G., Doyle, A. E., Nigg, J. T., Faraone, S. V., & Pennington, B. F. (2005). Validity of the executive function theory of attention-deficit/hyperactivity disorder: A meta-analytic review. Biological Psychiatry, 57, 1336–1346.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard Hommel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chabani, E., Hommel, B. Effectiveness of visual and verbal prompts in training visuospatial processing skills in school age children. Instr Sci 42, 995–1012 (2014). https://doi.org/10.1007/s11251-014-9316-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11251-014-9316-7

Keywords

Navigation