The lag effect in secondary school classrooms: Enhancing students’ memory for vocabulary

Abstract

Educators often face serious time constraints that impede multiple repetition lessons on the same material. Thus, it would be useful to know when to schedule a single repetition unit to maximize memory performance. Laboratory studies revealed that the length of the retention interval (i.e., the time between the last learning session and the final memory test) dictates the optimal lag between two learning sessions. The present study tests the generalizability of this finding to vocabulary learning in secondary school. Sixth-graders were retaught English–German vocabulary after lags of 0, 1, or 10 days and tested 7 or 35 days later. In line with our predictions, we found that the optimal lag depends on the retention interval: Given a 7-day retention interval, students performed best when relearning occurred after 1 day. When vocabulary was tested after 35 days, however, students benefited from lags of both 1 and 10 days. Model-based analyses show that enhanced encoding processes and stronger resistance to forgetting—but not better retrieval processes—underlie the benefits of optimal lag. Our findings have practical implications for classroom instruction and suggest that review units should be planned carefully by taking the time of the final test into consideration.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

Notes

  1. 1.

    Massed practice means that the entire study time is crammed into one single learning session and the same material is repeatedly studied over and over (i.e., studying the same material for 4 h on Tuesday). Spaced practice allocates the same study time to different learning sessions which, for example, take place on different days (i.e., studying 2 h on Monday and 2 h on Tuesday).

  2. 2.

    Note that the research on the lag effect should be distinguished from a line of work that focuses on the benefits of blocked versus nonblocked teaching. In the latter line of research, different pieces of information are presented either within a single large session or allocated to multiple, but shorter sessions (Randler et al. 2008; Lawrence and McPherson 2000). In the current paper, in contrast, we investigate after which lag newly learned information should be repeated given that the goal is to retrieve this information after a pre-defined retention interval without further study.

  3. 3.

    To revisit, Cepeda et al.’s (2008) findings suggest that the optimal lag for a test administered 35 days after practice is 11 days. However, due to the predetermined school schedule, it was not possible to realize a relearning session 11 days after the initial learning session. Therefore, the longest lag was 10 days instead.

  4. 4.

    Three of the excluded participants were in the 10_7 condition (i.e., 10 days lag and 7 days retention interval), three were in the 0_35 condition, three were in the 10_35 condition, and two were in the 1_35 condition. We ran analyses on 7 out of the 11 excluded students for which we collected valid cued recall performance at the end of the first learning session. We compared their mean in cued recall at the end of the first learning session (M = 18.14) to the mean of the students that were used in the final analyses (M = 19.05). There was no systematic difference in regard to their initial memory performance, t(70) = −.43, p = .672.

  5. 5.

    For detailed information see http://www.cs.colorado.edu/~mozer/index.php?dir=/Research/Projects/Optimization%20of%20learning/.

References

  1. Ambridge, B., Theakston, A. L., Lieven, E. V., & Tomasello, M. (2006). The distributed learning effect for children’s acquisition of an abstract syntactic construction. Cognitive Development, 21, 174–193. doi:10.1016/j.cogdev.2005.09.003.

    Article  Google Scholar 

  2. Ausubel, D. P. (1966). Early versus delayed review in meaningful learning. Psychology in the Schools, 3, 195–198. doi:10.1002/1520-6807(196607)3:3<195:AID-PITS2310030302>3.0.CO;2-X.

    Article  Google Scholar 

  3. Bahrick, H. P., Bahrick, L. E., Bahrick, A. S., & Bahrick, P. E. (1993). Maintenance of foreign language vocabulary and the spacing effect. Psychological Science, 4, 316–321. doi:10.1111/j.1467-9280.1993.tb00571.x.

    Article  Google Scholar 

  4. Bahrick, H. P., & Hall, L. K. (1991). Lifetime maintenance of high school mathematics content. Journal of Experimental Psychology: General, 120, 20–33. doi:10.1037/0096-3445.120.1.20.

    Article  Google Scholar 

  5. Bahrick, H. P., & Hall, L. K. (2005). The importance of retrieval failures to long-term retention: A metacognitive explanation of the spacing effect. Journal of Memory and Language, 52, 566–577. doi:10.1016/j.jml.2005.01.012.

    Article  Google Scholar 

  6. Batchelder, W. H., & Riefer, D. M. (1999). Theoretical and empirical review of multinomial process tree modeling. Psychonomic Bulletin and Review, 6, 57–86. doi:10.3758/BF03210812.

    Article  Google Scholar 

  7. Bird, S. (2010). Effects of distributed practice on the acquisition of second language English syntax. Applied Psycholinguistics, 31, 635–650. doi:10.1017/S0142716410000172.

    Article  Google Scholar 

  8. Bloom, K. C., & Shuell, T. J. (1981). Effects of massed and distributed practice on the learning and retention of second-language vocabulary. Journal of Educational Research, 74, 245–248.

    Google Scholar 

  9. Brainerd, C. J., Reyna, V. F., Howe, M. L., Kingma, J., & Guttentag, R. E. (1990). The development of forgetting and reminiscence. Monographs of the Society for Research in Child Development, 55, 1–109. doi:10.2307/1166106.

    Article  Google Scholar 

  10. Brehmer, Y., Li, S.-C., Müller, V., von Oertzen, T., & Lindenberger, U. (2007). Memory plasticity across the life span: Uncovering children’s latent potential. Developmental Psychology, 43, 465–478. doi:10.1037/0012-1649.43.2.465.

    Article  Google Scholar 

  11. Cepeda, N. J., Coburn, N., Rohrer, D., Wixted, J. T., Mozer, M. C., & Pashler, H. (2009). Optimizing distributed practice: Theoretical analysis and practical implications. Experimental Psychology, 56, 236–246. doi:10.1027/1618-3169.56.4.236.

    Article  Google Scholar 

  12. Cepeda, N. J., Pashler, H., Vul, E., Wixted, J. T., & Rohrer, D. (2006). Distributed practice in verbal recall tasks: A review and quantitative synthesis. Psychological Bulletin, 132, 354–380.

    Article  Google Scholar 

  13. Cepeda, N. J., Vul, E., Rohrer, D., Wixted, J. T., & Pashler, H. (2008). Spacing effects in learning: A temporal ridgeline of optimal retention. Psychological Science, 19, 1095–1102. doi:10.1111/j.1467-9280.2008.02209.x.

    Article  Google Scholar 

  14. Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale: Erlbaum.

  15. Delaney, P. F., Verkoeijen, P. P. J. L., & Spirgel, A. (2010). Spacing and testing effects: A deeply critical, lengthy, and at times discursive review of the literature. In B. H. Ross (Ed.), Psychology of learning and motivation: the psychology of learning and motivation: Advances in research and theory (pp. 63–147). San Diego: Academic Press.

  16. Dempster, F. N. (1988). The spacing effect: A case study in the failure to apply the results of psychological research. American Psychologist, 43, 627–634. doi:10.1037/0003-066X.43.8.627.

    Article  Google Scholar 

  17. Erdfelder, E., Auer, T.-S., Hilbig, B. E., Aßfalg, A., Moshagen, M., & Nadarevic, L. (2009). Multinomial processing tree models: A review of the literature. Journal of Psychology, 217, 108–124. doi:10.1027/0044-3409.217.3.108.

    Google Scholar 

  18. Faul, F., Erdfelder, E., Buchner, A., & Lang, A.-G. (2009). Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behavior Research Methods, 41, 1149–1160. doi:10.3758/BRM.41.4.1149.

    Article  Google Scholar 

  19. Gathercole, S. E., Lamont, E., & Alloway, T. P. (2006). Working memory in the classroom. In S. J. Pickering (Ed.), Working memory and education (pp. 219–240). Burlington: Academic Press.

    Google Scholar 

  20. Gathercole, S. E., Pickering, S. J., Ambridge, B., & Wearing, H. (2004). The structure of working memory from 4 to 15 years of age. Developmental Psychology, 40, 177–190. doi:10.1037/0012-1649.40.2.177.

    Article  Google Scholar 

  21. Glenberg, A. M. (1979). Component-levels theory of the effects of spacing of repetitions on recall and recognition. Memory and Cognition, 7, 95–112. doi:10.3758/BF03197590.

    Article  Google Scholar 

  22. Glenberg, A. M., & Lehmann, T. S. (1980). Spacing repetitions over 1 week. Memory and Cognition, 8, 528–538. doi:10.3758/BF03213772.

    Article  Google Scholar 

  23. Grote, M. G. (1995). Distributed versus massed practice in high school physics. School Science and Mathematics, 95, 97–101. doi:10.1111/j.1949-8594.1995.tb15736.x.

    Article  Google Scholar 

  24. Hattie, J. (2009). Visible learning: A synthesis of over 800 meta-analyses relating to achievement. New York: Routledge.

  25. Hogan, R. M., & Kintsch, W. (1971). Differential effects of study and test trials on long-term recognition and recall. Journal of Verbal Learning and Verbal Behavior, 10, 562–567. doi:10.1016/S0022-5371(71)80029-4.

    Article  Google Scholar 

  26. Kornell, N. (2009). Optimising learning using flashcards: Spacing is more effective than cramming. Applied Cognitive Psychology, 23, 1297–1317. doi:10.1002/acp.1537.

    Article  Google Scholar 

  27. Küpper-Tetzel, C. E., & Erdfelder, E. (2012). Encoding, maintenance, and retrieval processes in the lag effect: A multinomial processing tree analysis. Memory, 20, 37–47. doi:10.1080/09658211.2011.631550.

    Article  Google Scholar 

  28. Lawrence, W. W., & McPherson, D. D. (2000). A comparative study of block scheduling and traditional scheduling on academic achievement. Journal of Instructional Psychology, 27, 178–182.

    Google Scholar 

  29. Moshagen, M. (2010). multiTree: A computer program for the analysis of multinomial processing tree models. Behavior Research Methods, 42, 42–54. doi:10.3758/BRM.42.1.42.

    Article  Google Scholar 

  30. Mozer, M. C., Pashler, H., Cepeda, N. J., Lindsey, R., & Vul, E. (2009). Predicting the optimal spacing of study: A multiscale context model of memory. In Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, & A. Culotta (Eds.), Advances in neural information processing systems (pp. 1321–1329). La Jolla: NIPS Foundation.

    Google Scholar 

  31. Neisser, U. (1976). Cognition and reality: Principles and implications of cognitive psychology. New York: Freeman.

  32. Pashler, H., Rohrer, D., Cepeda, N. J., & Carpenter, S. K. (2007). Enhancing learning and retarding forgetting: Choices and consequences. Psychonomic Bulletin and Review, 14, 187–193. doi:10.3758/BF03194050.

    Article  Google Scholar 

  33. Pressley, M., & Hilden, K. (2006). Cognitive Strategies. In D. Kuhn, R. S., Siegler, W. Damon, & R. M. Lerner (Eds.), Handbook of child psychology: Vol 2, Cognition, perception, and language (pp. 511–556). Hoboken: Wiley.

  34. Randler, C., Kranich, K., & Eisele, M. (2008). Block scheduled versus traditional biology teaching: An educational experiment using the water lily. Instructional Science, 36, 17–25. doi:10.1007/s11251-007-9020-y.

    Article  Google Scholar 

  35. Rawson, K. A., & Kintsch, W. (2005). Rereading effects depend on time of test. Journal of Educational Psychology, 97, 70–80. doi:10.1037/0022-0663.97.1.70.

    Article  Google Scholar 

  36. Reynolds, J. H., & Glaser, R. (1964). Effects of repetition and spaced review upon retention of a complex learning task. Journal of Educational Psychology, 55, 297–308. doi:10.1037/h0040734.

    Article  Google Scholar 

  37. Rohrer, D., & Taylor, K. (2006). The Effects of overlearning and distributed practise on the retention of mathematics knowledge. Applied Cognitive Psychology, 20, 1209–1224. doi:10.1002/acp.1266.

    Article  Google Scholar 

  38. Rohrer, D., & Taylor, K. (2007). The shuffling of mathematics problems improves learning. Instructional Science, 35, 481–498. doi:10.1007/s11251-007-9015-8.

    Article  Google Scholar 

  39. Seabrook, R., Brown, G. D., & Solity, J. E. (2005). Distributed and massed practice: From laboratory to classroom. Applied Cognitive Psychology, 19, 107–122. doi:10.1002/acp.1066.

    Article  Google Scholar 

  40. Sobel, H. S., Cepeda, N. J., & Kapler, I. V. (2011). Spacing effects in real-world classroom vocabulary learning. Applied Cognitive Psychology,. doi:10.1002/acp.1747.

    Google Scholar 

  41. Thios, S. J., & D‘Agostino, P. R. R. (1976). Effects of repetition as a function of study-phase retrieval. Journal of Verbal Learning and Verbal Behavior, 15, 529–536. doi:10.1016/0022-5371(76)90047-5.

    Article  Google Scholar 

  42. Thomson, D. M., & Tulving, E. (1970). Associative encoding and retrieval: Weak and strong cues. Journal of Experimental Psychology, 86, 255–262. doi:10.1037/h0029997.

    Article  Google Scholar 

Download references

Acknowledgments

The authors express their gratitude to the school principal, Mr. Michael Hohenadel, to the teachers, and the students of the Elisabeth secondary school in Mannheim for making this study possible. We thank the graduate students of the first author’s service learning seminar, Dagmar Klein, Martin Knab, Sharmila Pushpakanthan, Sonja Sobott, and Sarah Zelt, for data collection and four anonymous reviewers for helpful comments on an earlier version of the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Carolina E. Küpper-Tetzel.

Appendix

Appendix

See Table 1

Table 1 List of vocabulary word pairs and distractor words

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Küpper-Tetzel, C.E., Erdfelder, E. & Dickhäuser, O. The lag effect in secondary school classrooms: Enhancing students’ memory for vocabulary. Instr Sci 42, 373–388 (2014). https://doi.org/10.1007/s11251-013-9285-2

Download citation

Keywords

  • Lag effect
  • Long-term memory
  • Secondary school students
  • Classroom-based learning
  • Vocabulary learning