Advertisement

Instructional Science

, Volume 42, Issue 3, pp 373–388 | Cite as

The lag effect in secondary school classrooms: Enhancing students’ memory for vocabulary

  • Carolina E. Küpper-TetzelEmail author
  • Edgar Erdfelder
  • Oliver Dickhäuser
Article

Abstract

Educators often face serious time constraints that impede multiple repetition lessons on the same material. Thus, it would be useful to know when to schedule a single repetition unit to maximize memory performance. Laboratory studies revealed that the length of the retention interval (i.e., the time between the last learning session and the final memory test) dictates the optimal lag between two learning sessions. The present study tests the generalizability of this finding to vocabulary learning in secondary school. Sixth-graders were retaught English–German vocabulary after lags of 0, 1, or 10 days and tested 7 or 35 days later. In line with our predictions, we found that the optimal lag depends on the retention interval: Given a 7-day retention interval, students performed best when relearning occurred after 1 day. When vocabulary was tested after 35 days, however, students benefited from lags of both 1 and 10 days. Model-based analyses show that enhanced encoding processes and stronger resistance to forgetting—but not better retrieval processes—underlie the benefits of optimal lag. Our findings have practical implications for classroom instruction and suggest that review units should be planned carefully by taking the time of the final test into consideration.

Keywords

Lag effect Long-term memory Secondary school students Classroom-based learning Vocabulary learning 

Notes

Acknowledgments

The authors express their gratitude to the school principal, Mr. Michael Hohenadel, to the teachers, and the students of the Elisabeth secondary school in Mannheim for making this study possible. We thank the graduate students of the first author’s service learning seminar, Dagmar Klein, Martin Knab, Sharmila Pushpakanthan, Sonja Sobott, and Sarah Zelt, for data collection and four anonymous reviewers for helpful comments on an earlier version of the manuscript.

References

  1. Ambridge, B., Theakston, A. L., Lieven, E. V., & Tomasello, M. (2006). The distributed learning effect for children’s acquisition of an abstract syntactic construction. Cognitive Development, 21, 174–193. doi: 10.1016/j.cogdev.2005.09.003.CrossRefGoogle Scholar
  2. Ausubel, D. P. (1966). Early versus delayed review in meaningful learning. Psychology in the Schools, 3, 195–198. doi: 10.1002/1520-6807(196607)3:3<195:AID-PITS2310030302>3.0.CO;2-X.CrossRefGoogle Scholar
  3. Bahrick, H. P., Bahrick, L. E., Bahrick, A. S., & Bahrick, P. E. (1993). Maintenance of foreign language vocabulary and the spacing effect. Psychological Science, 4, 316–321. doi: 10.1111/j.1467-9280.1993.tb00571.x.CrossRefGoogle Scholar
  4. Bahrick, H. P., & Hall, L. K. (1991). Lifetime maintenance of high school mathematics content. Journal of Experimental Psychology: General, 120, 20–33. doi: 10.1037/0096-3445.120.1.20.CrossRefGoogle Scholar
  5. Bahrick, H. P., & Hall, L. K. (2005). The importance of retrieval failures to long-term retention: A metacognitive explanation of the spacing effect. Journal of Memory and Language, 52, 566–577. doi: 10.1016/j.jml.2005.01.012.CrossRefGoogle Scholar
  6. Batchelder, W. H., & Riefer, D. M. (1999). Theoretical and empirical review of multinomial process tree modeling. Psychonomic Bulletin and Review, 6, 57–86. doi: 10.3758/BF03210812.CrossRefGoogle Scholar
  7. Bird, S. (2010). Effects of distributed practice on the acquisition of second language English syntax. Applied Psycholinguistics, 31, 635–650. doi: 10.1017/S0142716410000172.CrossRefGoogle Scholar
  8. Bloom, K. C., & Shuell, T. J. (1981). Effects of massed and distributed practice on the learning and retention of second-language vocabulary. Journal of Educational Research, 74, 245–248.Google Scholar
  9. Brainerd, C. J., Reyna, V. F., Howe, M. L., Kingma, J., & Guttentag, R. E. (1990). The development of forgetting and reminiscence. Monographs of the Society for Research in Child Development, 55, 1–109. doi: 10.2307/1166106.CrossRefGoogle Scholar
  10. Brehmer, Y., Li, S.-C., Müller, V., von Oertzen, T., & Lindenberger, U. (2007). Memory plasticity across the life span: Uncovering children’s latent potential. Developmental Psychology, 43, 465–478. doi: 10.1037/0012-1649.43.2.465.CrossRefGoogle Scholar
  11. Cepeda, N. J., Coburn, N., Rohrer, D., Wixted, J. T., Mozer, M. C., & Pashler, H. (2009). Optimizing distributed practice: Theoretical analysis and practical implications. Experimental Psychology, 56, 236–246. doi: 10.1027/1618-3169.56.4.236.CrossRefGoogle Scholar
  12. Cepeda, N. J., Pashler, H., Vul, E., Wixted, J. T., & Rohrer, D. (2006). Distributed practice in verbal recall tasks: A review and quantitative synthesis. Psychological Bulletin, 132, 354–380.CrossRefGoogle Scholar
  13. Cepeda, N. J., Vul, E., Rohrer, D., Wixted, J. T., & Pashler, H. (2008). Spacing effects in learning: A temporal ridgeline of optimal retention. Psychological Science, 19, 1095–1102. doi: 10.1111/j.1467-9280.2008.02209.x.CrossRefGoogle Scholar
  14. Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale: Erlbaum.Google Scholar
  15. Delaney, P. F., Verkoeijen, P. P. J. L., & Spirgel, A. (2010). Spacing and testing effects: A deeply critical, lengthy, and at times discursive review of the literature. In B. H. Ross (Ed.), Psychology of learning and motivation: the psychology of learning and motivation: Advances in research and theory (pp. 63–147). San Diego: Academic Press.Google Scholar
  16. Dempster, F. N. (1988). The spacing effect: A case study in the failure to apply the results of psychological research. American Psychologist, 43, 627–634. doi: 10.1037/0003-066X.43.8.627.CrossRefGoogle Scholar
  17. Erdfelder, E., Auer, T.-S., Hilbig, B. E., Aßfalg, A., Moshagen, M., & Nadarevic, L. (2009). Multinomial processing tree models: A review of the literature. Journal of Psychology, 217, 108–124. doi: 10.1027/0044-3409.217.3.108.Google Scholar
  18. Faul, F., Erdfelder, E., Buchner, A., & Lang, A.-G. (2009). Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behavior Research Methods, 41, 1149–1160. doi: 10.3758/BRM.41.4.1149.CrossRefGoogle Scholar
  19. Gathercole, S. E., Lamont, E., & Alloway, T. P. (2006). Working memory in the classroom. In S. J. Pickering (Ed.), Working memory and education (pp. 219–240). Burlington: Academic Press.CrossRefGoogle Scholar
  20. Gathercole, S. E., Pickering, S. J., Ambridge, B., & Wearing, H. (2004). The structure of working memory from 4 to 15 years of age. Developmental Psychology, 40, 177–190. doi: 10.1037/0012-1649.40.2.177.CrossRefGoogle Scholar
  21. Glenberg, A. M. (1979). Component-levels theory of the effects of spacing of repetitions on recall and recognition. Memory and Cognition, 7, 95–112. doi: 10.3758/BF03197590.CrossRefGoogle Scholar
  22. Glenberg, A. M., & Lehmann, T. S. (1980). Spacing repetitions over 1 week. Memory and Cognition, 8, 528–538. doi: 10.3758/BF03213772.CrossRefGoogle Scholar
  23. Grote, M. G. (1995). Distributed versus massed practice in high school physics. School Science and Mathematics, 95, 97–101. doi: 10.1111/j.1949-8594.1995.tb15736.x.CrossRefGoogle Scholar
  24. Hattie, J. (2009). Visible learning: A synthesis of over 800 meta-analyses relating to achievement. New York: Routledge.Google Scholar
  25. Hogan, R. M., & Kintsch, W. (1971). Differential effects of study and test trials on long-term recognition and recall. Journal of Verbal Learning and Verbal Behavior, 10, 562–567. doi: 10.1016/S0022-5371(71)80029-4.CrossRefGoogle Scholar
  26. Kornell, N. (2009). Optimising learning using flashcards: Spacing is more effective than cramming. Applied Cognitive Psychology, 23, 1297–1317. doi: 10.1002/acp.1537.CrossRefGoogle Scholar
  27. Küpper-Tetzel, C. E., & Erdfelder, E. (2012). Encoding, maintenance, and retrieval processes in the lag effect: A multinomial processing tree analysis. Memory, 20, 37–47. doi: 10.1080/09658211.2011.631550.CrossRefGoogle Scholar
  28. Lawrence, W. W., & McPherson, D. D. (2000). A comparative study of block scheduling and traditional scheduling on academic achievement. Journal of Instructional Psychology, 27, 178–182.Google Scholar
  29. Moshagen, M. (2010). multiTree: A computer program for the analysis of multinomial processing tree models. Behavior Research Methods, 42, 42–54. doi: 10.3758/BRM.42.1.42.CrossRefGoogle Scholar
  30. Mozer, M. C., Pashler, H., Cepeda, N. J., Lindsey, R., & Vul, E. (2009). Predicting the optimal spacing of study: A multiscale context model of memory. In Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, & A. Culotta (Eds.), Advances in neural information processing systems (pp. 1321–1329). La Jolla: NIPS Foundation.Google Scholar
  31. Neisser, U. (1976). Cognition and reality: Principles and implications of cognitive psychology. New York: Freeman.Google Scholar
  32. Pashler, H., Rohrer, D., Cepeda, N. J., & Carpenter, S. K. (2007). Enhancing learning and retarding forgetting: Choices and consequences. Psychonomic Bulletin and Review, 14, 187–193. doi: 10.3758/BF03194050.CrossRefGoogle Scholar
  33. Pressley, M., & Hilden, K. (2006). Cognitive Strategies. In D. Kuhn, R. S., Siegler, W. Damon, & R. M. Lerner (Eds.), Handbook of child psychology: Vol 2, Cognition, perception, and language (pp. 511–556). Hoboken: Wiley.Google Scholar
  34. Randler, C., Kranich, K., & Eisele, M. (2008). Block scheduled versus traditional biology teaching: An educational experiment using the water lily. Instructional Science, 36, 17–25. doi: 10.1007/s11251-007-9020-y.CrossRefGoogle Scholar
  35. Rawson, K. A., & Kintsch, W. (2005). Rereading effects depend on time of test. Journal of Educational Psychology, 97, 70–80. doi: 10.1037/0022-0663.97.1.70.CrossRefGoogle Scholar
  36. Reynolds, J. H., & Glaser, R. (1964). Effects of repetition and spaced review upon retention of a complex learning task. Journal of Educational Psychology, 55, 297–308. doi: 10.1037/h0040734.CrossRefGoogle Scholar
  37. Rohrer, D., & Taylor, K. (2006). The Effects of overlearning and distributed practise on the retention of mathematics knowledge. Applied Cognitive Psychology, 20, 1209–1224. doi: 10.1002/acp.1266.CrossRefGoogle Scholar
  38. Rohrer, D., & Taylor, K. (2007). The shuffling of mathematics problems improves learning. Instructional Science, 35, 481–498. doi: 10.1007/s11251-007-9015-8.CrossRefGoogle Scholar
  39. Seabrook, R., Brown, G. D., & Solity, J. E. (2005). Distributed and massed practice: From laboratory to classroom. Applied Cognitive Psychology, 19, 107–122. doi: 10.1002/acp.1066.CrossRefGoogle Scholar
  40. Sobel, H. S., Cepeda, N. J., & Kapler, I. V. (2011). Spacing effects in real-world classroom vocabulary learning. Applied Cognitive Psychology,. doi: 10.1002/acp.1747.Google Scholar
  41. Thios, S. J., & D‘Agostino, P. R. R. (1976). Effects of repetition as a function of study-phase retrieval. Journal of Verbal Learning and Verbal Behavior, 15, 529–536. doi: 10.1016/0022-5371(76)90047-5.CrossRefGoogle Scholar
  42. Thomson, D. M., & Tulving, E. (1970). Associative encoding and retrieval: Weak and strong cues. Journal of Experimental Psychology, 86, 255–262. doi: 10.1037/h0029997.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Carolina E. Küpper-Tetzel
    • 1
    Email author
  • Edgar Erdfelder
    • 1
  • Oliver Dickhäuser
    • 2
  1. 1.Department of PsychologySchool of Social Sciences, University of MannheimMannheimGermany
  2. 2.Department of PsychologySchool of Social Sciences, University of MannheimMannheimGermany

Personalised recommendations