The issue starts off with Kapur’s study with ninth-grade mathematics students on learning the concept of variance. Consistent with his prior work (e.g., Kapur 2010, 2011), Kapur (2012) found that PF students, who initially attempted to solve problems on the novel concept in small groups, generated a diversity of formulations for variance but were unsuccessful in developing the canonical formulation. Other than providing affective support and encouragement to PF students to persist in generation, no other support was provided. After the generation phase, the teacher compared and contrasted student-generated solutions and taught the canonical concept. In contrast, students who initially received direct instruction (DI) solved practice problems successfully by relying on the canonical formulation of variance taught to them. On the posttest however, PF students significantly outperformed DI students on conceptual understanding and transfer without compromising procedural fluency. Interestingly, Kapur also replicated the finding that the diversity of student-generated RSMs is significantly correlated with how much students learn from PF. A direct implication of this finding is to examine ways of supporting students in RSM generation that go beyond affective support that may even further increase the efficacy of PF. Indeed, the rest of the papers in this special issue contribute precisely to this question.
Westermann and Rummel (2012) supported PF students during their initial problem-solving and RSM generation with a role-script called Think Ask Understand (TAU). In a four-week, in vivo experiment with 76 university students, Westermann and Rummel compared TAU to a direct instruction (DI) condition. Their study was conducted in a re-learning situation on four topics of mathematical analysis. Participating students wanted to repeat the topics for upcoming examinations. Westermann and Rummel found that students in the TAU condition outperformed students in the DI condition in all weeks but the first. Process data further indicated that students collaborated fruitfully in accordance with the role script and increasingly internalized the script. The results suggest that the more students were familiarized with TAU, the better their learning outcomes became. The improved collaboration may thus have paved the way for increased learning from the subsequent instruction. Importantly, these findings call into question whether all support must be delayed. The primary issue may not be whether or not to provide support, but rather when to provide support and which type of support to employ. Moreover, this study provides evidence that delaying instruction can also promote learning in relearning situations and at the university level. Finally, the results suggest that implementing and investigating learning conditions over a longer period to familiarize learners with the new method may maximize the effect on learning.
Roll et al. (2012) conceptualized support for undergraduate students’ RSM generation in the form of metacognitive scaffolding. Students enrolled in a first-year physics lab course engaged in a PF activity on an advanced topic in data analysis, namely, the uncertainty in the slope of best-fitted lines. Roll and colleagues identified exploratory analysis, self-explanation, peer interaction, and evaluation as key strategies that students fail to engage in, and designed metacognitive supports in the form of question, self-explanation, and peer-interaction prompts to support students during the process of generating measures for uncertainty in the slope of a best-fit line. Students in the unguided invention (UI) condition received conventional invention activities where they were asked to invent methods for calculating uncertainties in best-fitting lines; students in the guided invention (GI) condition received metacognitive scaffolding in the form of the described prompts. GI students invented methods that included more conceptual features and ranked the given datasets more accurately than those in the UI condition, although the quality of their mathematical expressions was not improved. At the learning strategy level, GI students showed more and better instances of unprompted self-explanations and they revised their methods more frequently—even on components of the task that were not supported by the metacognitive prompts—than the UI students. These results suggest that process guidance in the form of metacognitive scaffolding augments the inherent benefits of invention activities and can lead to gains at both domain and learning strategy levels.
Finally, Westermann and Rummel (2012) investigated how the effectiveness of formula invention activities in math may be mediated by composition of the small groups in terms of their members’ mathematical ability. In two studies, small groups of undergraduate students engaged in a variance learning task based on the one used in the Kapur (2012) study. Results suggested that groups may need at least one member with high math ability to take advantage of the invention learning setting. Groups consisting of both high and low math ability members generated a broader range of RSMs during the invention task than than all-low ability and all-high ability groups, and this related to better uptake of the canonical formula when it was presented after the invention task.
Table 1 gives a compact overview of the studies in this special issue highlighting their commonalities and differences. As evident from the table, the studies cover a broad array of participants from 9th-graders to university students at the Master’s level. The content domain of all studies was mathematics and statistics. With the exception of the Westermann and Rummel study, which examined PF in a re-learning situation, all studies examine PF in the context of initial learning of a new concept.
Table 1 Overview of empirical studies in this special issue