Skip to main content

Conveying clinical reasoning based on visual observation via eye-movement modelling examples

Abstract

Complex perceptual tasks, like clinical reasoning based on visual observations of patients, require not only conceptual knowledge about diagnostic classes but also the skills to visually search for symptoms and interpret these observations. However, medical education so far has focused very little on how visual observation skills can be efficiently conveyed to novices. The current study applied a novel instructional method to teach these skills by showing the learners how an expert model visually searches and interprets symptoms (i.e., eye-movement modelling examples; EMMEs). Case videos of patients were verbally explained by a model (control condition) and presented to students. In the experimental conditions, the participants received a recording of the model’s eye movements superimposed on the case videos. The eye movements were displayed by either highlighting the features the model focused on with a circle (the circle condition) or by blurring the features the model did not focus on (the spotlight condition). Compared to the other two conditions, results show that a spotlight on the case videos better guides the students’ attention towards the relevant features. Moreover, when testing the students’ clinical reasoning skills with videos of new patient cases without any guidance, participants studying EMMEs with a spotlight showed improved their visual search and enhanced interpretation performance of the symptoms in contrast to participants in either the circle or the control condition. These findings show that a spotlight EMME can successfully convey clinical reasoning based on visual observations.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Antes, J. R., & Kristjanson, A. F. (1991). Discriminating artists from nonartists by their eye-fixation patterns. Perceptual and Motor Skills, 73, 893–894.

    Google Scholar 

  • Atkinson, R. K., Derry, S. J., Renkl, A., & Wortham, D. (2000). Learning from examples: Instructional principles from the worked examples research. Review of Educational Research, 70, 181–214.

    Google Scholar 

  • Balslev, T., De Grave, W. S., Muijtjens, A. M. M., Eika, B., & Scherpbier, A. J. J. A. (2009). The development of shared cognition in paediatric residents analysing a patient video case versus a paper patient case. Advances in Health Science Education, 14, 557–565.

    Article  Google Scholar 

  • Bandura, A. (1977). Social learning theory. Englewood Cliffs, NJ: Prentice-Hall.

    Google Scholar 

  • Boshuizen, H. P. A., & Schmidt, H. G. (1992). On the role of biomedical knowledge in clinical reasoning by experts, intermediates, and novices. Cognitive Science, 16, 153–184.

    Article  Google Scholar 

  • Brooks, L. R., LeBlanc, V. R., & Norman, G. R. (2000). On the difficulty of noticing obvious features in patient appearance. Psychological Science, 11, 112–117.

    Article  Google Scholar 

  • Charness, N., Reingold, E. M., Pomplun, M., & Stampe, D. (2001). The perceptual aspect of skilled performance in chess: Evidence from eye movements. Memory and Cognition, 29, 1146–1152.

    Article  Google Scholar 

  • Chi, M. T. H. (2006). Laboratory methods for assessing experts’ and novices’ knowledge. In K. A. Ericsson, N. Charness, P. J. Feltovich, & R. R. Hoffman (Eds.), The Cambridge handbook of expertise and expert performance (pp. 167–184). Cambridge, UK: Cambridge University Press.

    Chapter  Google Scholar 

  • Collins, A. F., Brown, J. S., & Newman, S. (1989). Cognitive apprenticeship: Teaching the craft of reading, writing, and mathematics. In L. Resnick (Ed.), Cognition and instruction: Issues and agendas (pp. 453–494). Mahwah, NJ: Erlbaum.

    Google Scholar 

  • De Koning, B. B., Tabbers, H. K., Rikers, R. M. J. P., & Paas, F. (2009). Towards a framework for attention cueing in instructional animations: Guidelines for research and design. Educational Psychology Review, 21, 113–140.

    Article  Google Scholar 

  • De Leng, B. A., Dolmans, D. H. J. M., Van de Wiel, M., Muijtjens, A. M. M., & Van der Vleuten, C. P. M. (2007). How video cases should be used as authentic stimuli in problem-based medical education. Medical Education, 41, 181–188.

    Article  Google Scholar 

  • Dequeker, J., & Jaspaert, R. (1998). Teaching problem-solving and clinical reasoning: 20 years experience with video-supported small-group learning. Medical Education, 32, 384–389.

    Article  Google Scholar 

  • Dorr, M., Jarodzka, H., & Barth, E. (2010). Space-variant spatio-temporal filtering of video for gaze visualization and perceptual learning. In C. Morimoto & H. Instance (Eds.), Proceedings of eye tracking research & applications ETRA’10 (pp. 307–314). New York, NY: ACM.

    Google Scholar 

  • Egger, J., Grossmann, G., & Auchterlonie, I. A. (2003). Benign sleep myoclonus in infancy mistaken for epilepsy. British Medical Journal, 326, 975–976.

    Article  Google Scholar 

  • Grant, E. R., & Spivey, M. J. (2003). Eye movements and problem solving: Guiding attention guides thought. Psychological Science, 14, 462–466.

    Article  Google Scholar 

  • Hansen, J. K., & Balslev, T. (2009). Hand activities in infantile masturbation: A video analysis of 13 cases. European Journal of Paediatric Neurology, 13, 508–510.

    Article  Google Scholar 

  • Helle, L., Nivala, M., Kronqvist, P., Gegenfurtner, A., Björk, P., & Säljö, R. (2011). Traditional microscopy instruction versus process-oriented virtual microscopy instruction: A naturalistic experiment with control group. Diagnostic Pathology, 6(Suppl 1), S8.

    Article  Google Scholar 

  • Hinds, P. I. (1999). The curse of expertise: The effects of expertise and debiasing methods on predictions of novice performance. Journal of Experimental Psychology Applied, 5, 205–221.

    Article  Google Scholar 

  • International League Against Epilepsy. (2010). Revised terminology and concepts for organization of the epilepsies: Report of the commission on classification and terminology. Epilepsia, 51, 676–685.

    Article  Google Scholar 

  • Jarodzka, H., Scheiter, K., Gerjets, P., & Van Gog, T. (2010a). In the eyes of the beholder: How experts and novices interpret dynamic stimuli. Learning and Instruction, 20, 146–154.

    Article  Google Scholar 

  • Jarodzka, H., Van Gog, T., Dorr, M., Scheiter, K., & Gerjets, P. (2010b). How to convey perceptual skills by displaying experts’ gaze data. In N. A. Taatgen & H. van Rijn (Eds.), Proceedings of the 31st annual conference of the cognitive science society (pp. 2920–2925). Austin, TX: Cognitive Science Society.

    Google Scholar 

  • Jucks, R., Schulte-Löbbert, P., & Bromme, R. (2007). Supporting experts’ written knowledge communication through reflective prompts on the use of specialist concepts. Journal of Psychology, 215, 237–247.

    Google Scholar 

  • Kamin, C., O’Sullivan, P., Deterding, R., & Younger, M. (2003). A comparison of critical thinking in groups of third-year medical students in text, video, and virtual PBL case modalities. Academic Medicine, 78, 204–211.

    Article  Google Scholar 

  • Krupinski, E. A. (2005). Visual search of mammographic images: Influence of lesion subtlety. Academic Radiology, 12, 965–969.

    Article  Google Scholar 

  • Krupinski, E. A. (2010). Current perspectives in medical image perception. Attention, Perception, & Psychophysics, 72, 1205–1217.

    Article  Google Scholar 

  • Krupinski, E. A., Tillack, A. A., Richter, L., Henderson, J. T., Bhattacharyya, A. K., Scott, K. M., et al. (2006). Eye-movement study and human performance using telepathology virtual slides: Implications for medical education and differences with experience. Human Pathology, 37, 1543–1556.

    Article  Google Scholar 

  • Kundel, H., Nodine, C., Krupinski, E., & Mello-Thoms, C. (2008). Using gaze-tracking data and mixture distribution analysis to support a holistic model for the detection of cancers on mammograms. Academic Radiology, 15, 881–886.

    Article  Google Scholar 

  • Lesgold, A., Rubinson, H., Feltovich, P., Glaser, R., Klopfer, D., & Wang, Y. (1988). Expertise in a complex skill: Diagnosing X-ray pictures. In M. T. H. Chi, R. Glaser, & M. Farr (Eds.), The nature of expertise (pp. 311–342). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Litchfield, D., Ball, L. J., Donovan, T., Manning, D. J., & Crawford, T. (2010). Viewing another person’s eye movements improves identification of pulmonary nodules in chest X-ray inspection. Journal of Experimental Psychology: Applied, 16, 251–262.

    Article  Google Scholar 

  • Lowe, R. K. (1999). Extracting information from an animation during complex visual learning. European Journal of Psychology of Education, 14, 225–244.

    Article  Google Scholar 

  • Lüders, H., Acharya, J., Baumgartner, C., Benbadis, S., Bleasel, A., Burgess, R., et al. (1998). Semiological seizure classification. Epilepsia, 39, 1006–1013.

    Article  Google Scholar 

  • Nordli, D. (2002). Infantile seizures and epilepsy syndromes. Epilepsia, 43, 11–16.

    Article  Google Scholar 

  • Nordli, D., Bazil, C. W., Scheuer, M. L., & Pedley, T. A. (1997). Recognition and classification of seizures in infants. Epilepsia, 38, 553–560.

    Article  Google Scholar 

  • Nückles, M., Winter, A., Wittwer, J., Herbert, M., & Hübner, S. (2006). How do experts adapt their explanations to a layperson’s knowledge in asynchronous communication? An experimental study. User Modeling and User Adapted Interaction, 16, 87–127.

    Article  Google Scholar 

  • Nyström, M. (2008). Off-line foveated compression and scene perception: An eye tracking approach. Unpublished doctoral dissertation, Lund University, Lund.

  • Nyström, M., & Holmqvist, K. (2008). Semantic override of low-level features in image viewing—both initially and overall. Journal of Eye Movement Research, 2, 1–11.

    Google Scholar 

  • Rao, R. P. N., Zielinsky, G. J., Hayhoe, M. M., & Ballard, D. H. (2002). Eye movements in iconic visual search. Vision Research, 42, 1447–1463.

    Article  Google Scholar 

  • Schmidt, D., & Schachter, S. C. (2000). Epilepsy: Problem solving in clinical practice. London, UK: Martin Dunitz.

    Google Scholar 

  • Simon, H. A. (1983). Why should machines learn? In R. S. Michalski, J. G. Carbonell, & T. M. Mitchell (Eds.), Machine learning: An artificial intelligence approach (pp. 25–38). Palo Alto, CA: Tioga.

    Google Scholar 

  • Sweller, J., Van Merriënboer, J. J. G., & Paas, F. (1998). Cognitive architecture and instructional design. Educational Psychological Review, 10, 251–296.

    Article  Google Scholar 

  • Underwood, G., Chapman, P., Brocklehurst, N., Underwood, J., & Crundall, D. (2003). Visual attention while driving: Sequences of eye fixations made by experienced and novice drivers. Ergonomics, 46, 629–646.

    Article  Google Scholar 

  • Van Gog, T., Jarodzka, H., Scheiter, K., Gerjets, P., & Paas, F. (2009). Attention guidance during example study via the model’s eye movements. Computers in Human Behavior, 25, 785–791.

    Article  Google Scholar 

  • Van Gog, T., Paas, F., & Van Merriënboer, J. J. G. (2006). Effects of process-oriented worked examples on troubleshooting transfer performance. Learning and Instruction, 16, 154–164.

    Article  Google Scholar 

  • Van Lehn, K. (1989). Problem solving and cognitive skill acquisition. In M. Posner (Ed.), Foundations of cognitive science (pp. 527–579). Mahwah, NJ: Erlbaum.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Halszka Jarodzka.

Additional information

This manuscript is part of the Special Issue: Collaborating with digital tools and peers in medical education. Cases and simulations as interventions in learning. Edited by Helle and Säljö.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jarodzka, H., Balslev, T., Holmqvist, K. et al. Conveying clinical reasoning based on visual observation via eye-movement modelling examples. Instr Sci 40, 813–827 (2012). https://doi.org/10.1007/s11251-012-9218-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11251-012-9218-5

Keywords

  • Example-based learning
  • Eye tracking
  • Expertise
  • Attention
  • Medical education