Instructional Science

, Volume 39, Issue 1, pp 41–61 | Cite as

The mystery of cognitive structure and how we can detect it: tracking the development of cognitive structures over time

  • Dirk Ifenthaler
  • Iskandaria Masduki
  • Norbert M. Seel
Article

Abstract

Many research studies have clearly demonstrated the importance of cognitive structures as the building blocks of meaningful learning and retention of instructional materials. Identifying the learners’ cognitive structures will help instructors to organize materials, identify knowledge gaps, and relate new materials to existing slots or anchors within the learners’ cognitive structures. The purpose of our empirical investigation is to track the development of cognitive structures over time. Accordingly, we demonstrate how various indicators derived from graph theory can be used for a precise description and analysis of cognitive structures. Our results revealed several patterns that helped us to better understand the construction and development of cognitive structures over time. We conclude by identifying applications of our approach for learning and instruction and proposing possibilities for the further development of our approach.

Keywords

Cognitive structure Mental model Concept map Hierarchical linear model 

References

  1. Acton, W. H., Johnson, P. J., & Goldsmith, T. E. (1994). Structural knowledge assessment: Comparison of referent structures. Journal of Educational Psychology, 86(2), 303–311. doi:10.1037/0022-0663.86.2.303.CrossRefGoogle Scholar
  2. Al-Diban, S. (2002). Diagnose mentaler Modelle. Hamburg: Verlag Dr. Kovac.Google Scholar
  3. Ausubel, D. P. (1963). Cognitive structure and the facilitation of meaningful verbal learning. Journal of Teacher Education, 14, 217–221. doi:10.1177/002248716301400220.CrossRefGoogle Scholar
  4. Bonato, M. (1990). Wissenstrukturierung mittels Struktur-Lege-Techniken. Eine grapentheoretische Analyse von Wissensnetzen. Frankfurt am Main: Lang.Google Scholar
  5. Cañas, A. J., Hill, R., Carff, R., Suri, N., Lott, J., & Eskridge, T. (2004). CmapTools: A knowledge modeling and sharing environment. In A. J. Cañas, J. D. Novak, F. M. González, et al. (Eds.), Concept maps: Theory, methodology, technology, Proceedings of the first international conference on concept mapping (pp. 125–133). Pamplona: Universidad Pública de Navarra.Google Scholar
  6. Chartrand, G. (1977). Introductory graph theory. New York: Dover.Google Scholar
  7. Clariana, R. B., & Wallace, P. E. (2007). A computer-based approach for deriving and measuring individual and team knowledge structure from essay questions. Journal of Educational Computing Research, 37(3), 211–227. doi:10.2190/EC.37.3.a.CrossRefGoogle Scholar
  8. Coffey, J. W., Carnot, M. J., Feltovich, P. J., Feltovich, J., Hoffman, R. R., Cañas, A. J., et al. (2003). A summary of literature pertaining to the use of concept mapping techniques and technologies for education and performance support. Pensacola, FL: Chief of Naval Education and Training.Google Scholar
  9. Collins, L. M., & Sayer, A. G. (Eds.). (2001). New methods for the analysis of change. Washington, DC: American Psychological Association.Google Scholar
  10. Derbentseva, N., Safayeni, F., & Cañas, A. J. (2004). Experiments on the effects of map structure and concept quantification during concept map construction. In A. J. Cañas, J. D. Novak & F. M. González (Eds.), Concept maps: Theory, methodology, technology, Proceedings of the First International Conference on Concept Mapping (pp. 125–132). Pamplona: Universidad Pública de Navarra.Google Scholar
  11. Diestel, R. (2000). Graph theory. New York: Springer.Google Scholar
  12. Ericsson, K. A., & Simon, H. A. (1993). Protocol analysis: Verbal reports as data. Cambridge, MA: MIT Press.Google Scholar
  13. Ericsson, K. A., & Simon, H. A. (1998). How to study thinking in everyday life. Mind, Culture, and Activity, 5(3), 178–186. doi:10.1207/s15327884mca0503_3.CrossRefGoogle Scholar
  14. Gentner, D., & Stevens, A. L. (1983). Mental models. Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
  15. Gunstone, R. F. (1980). Word association and the description of cognitive structure. Research in Science Education, 10, 45–53. doi:10.1007/BF02356308.CrossRefGoogle Scholar
  16. Harary, F. (1974). Graphentheorie. München: Oldenbourg.Google Scholar
  17. Harris, C. W. (Ed.). (1963). Problems in measuring change. Madison, WI: The University of Wisconsin Press.Google Scholar
  18. Herl, H. E., Baker, E. L., & Niemi, D. (1996). Construct validation of an approach to modeling cognitive structure of U.S. history knowledge. The Journal of Educational Research, 89(4), 206–218.CrossRefGoogle Scholar
  19. Hox, J. (2002). Multilevel analysis. Techniques and applications. Mahwah, NJ: Lawrence Erlbaum.Google Scholar
  20. Ifenthaler, D. (2006). Diagnose lernabhängiger Veränderung mentaler Modelle. Entwicklung der SMD-Technologie als methodologisches Verfahren zur relationalen, strukturellen und semantischen Analyse individueller Modellkonstruktionen. Freiburg: FreiDok.Google Scholar
  21. Ifenthaler, D. (2008a). Practical solutions for the diagnosis of progressing mental models. In D. Ifenthaler, P. Pirnay-Dummer, & J. M. Spector (Eds.), Understanding models for learning and instruction. Essays in honor of Norbert M. Seel (pp. 43–61). New York: Springer.CrossRefGoogle Scholar
  22. Ifenthaler, D. (2008b). Relational, structural, and semantic analysis of graphical representations and concept maps. Educational Technology Research and Development. doi:10.1007/s11423-008-9087-4.
  23. Ifenthaler, D. (2009). Model-based feedback for improving expertise and expert performance. Technology, Instruction, Cognition and learning, (in press).Google Scholar
  24. Ifenthaler, D., & Seel, N. M. (2005). The measurement of change: Learning-dependent progression of mental models. Technology, Instruction, Cognition and Learning, 2(4), 317–336.Google Scholar
  25. Johnson, T. E., O’Connor, D. L., Spector, J. M., Ifenthaler, D., & Pirnay-Dummer, P. (2006). Comparative study of mental model research methods: Relationships among ACSMM, SMD, MITOCAR & DEEP methodologies. In A. J. Cañas & J. D. Novak (Eds.), Concept maps: Theory, methodology, technology. Proceedings of the Second International Conference on Concept Mapping, Voume 1 (pp. 87–94). San José: Universidad de Costa Rica.Google Scholar
  26. Johnson-Laird, P. N. (1983). Mental models. Towards a cognitive science of language, inference, and consciousness. Cambridge, UK: Cambridge University Press.Google Scholar
  27. Jonassen, D. H. (1987). Assessing cognitive structure: Verifying a method using pattern notes. Journal of Research and Development in Education, 20(3), 1–14.Google Scholar
  28. Jonassen, D. H. (1988). Designing structured hypertext and structuring access to hypertext. Educational Technology, 28(11), 13–16.Google Scholar
  29. Jonassen, D. H., Beissner, K., & Yacci, M. (1993). Structural knowledge: Techniques for representing, conveying, and acquiring structural knowledge. Hilsdale, NJ: Lawrence Erlbaum.Google Scholar
  30. Kalyuga, S. (2006a). Assessment of learners’ organised knowledge structures in adaptive learning environments. Applied Cognitive Psychology, 20, 333–342. doi:10.1002/acp.1249.CrossRefGoogle Scholar
  31. Kalyuga, S. (2006b). Rapid assessment of learners’ proficiency: A cognitive load approach. Educational Psychology, 26(6), 735–749. doi:10.1080/01443410500342674.CrossRefGoogle Scholar
  32. Koubek, R. J., Clarkston, T. P., & Calvez, V. (1994). The training of knowledge structures for manufacturing tasks: An empirical study. Ergonomics, 37(4), 765–780. doi:10.1080/00140139408963687.CrossRefGoogle Scholar
  33. Koubek, R. J., & Mountjoy, D. N. (1991). Toward a model of knowledge structure and a comparative analysis of knowledge structure measurement technique. West Lafayette, IN: Purdue University.Google Scholar
  34. Mayer, R. E., & Greeno, J. G. (1972). Structural differences between learning outcomes produced by different instructional methods. Journal of Educational Psychology, 63(2), 165–173. doi:10.1037/h0032654.CrossRefGoogle Scholar
  35. Moskowitz, D. S., & Hershberger, S. L. (Eds.). (2002). Modelling intraindividual variability with repeated measures data. Mahwah, NJ: Lawrence Erlbaum.Google Scholar
  36. Nisbett, R. E., & Wilson, T. D. (1977). Telling more than we can know: Verbal reports on mental processes. Psychological Review, 84, 231–259. doi:10.1037/0033-295X.84.3.231.CrossRefGoogle Scholar
  37. Norman, D. A., Gentner, D. R., & Stevens, A. L. (1976). Comments on learning schemata and memory representation. In D. Klahr (Ed.), Cognition and instruction (pp. 177–196). Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
  38. Novak, J. D. (1998). Learning, creating, and using knowledge: Concept maps as facilitative tools in schools and corporations. Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
  39. Piaget, J. (1976). Die Äquilibration der kognitiven Strukturen. Stuttgart: Klett.Google Scholar
  40. Pirnay-Dummer, P. (2006). Expertise und Modellbildung: MITOCAR. Freiburg: FreiDok.Google Scholar
  41. Pirnay-Dummer, P. (2007). Model inspection trace of concepts and relations. A heuristic approach to language-oriented model assessment. Paper presented at the AREA 2007, Chicago, IL.Google Scholar
  42. Pirnay-Dummer, P., Ifenthaler, D., & Spector, J. M. (2008). Highly integrated model assessment technology and tools. In Kinshuk, Sampson, D. G., Spector, J. M., Isaias P. & Ifenthaler D. (Eds.), Proceedings of the IADIS international conference on cognition and exploratory learning in the digital age (pp. 18–28). Freiburg: IADIS.Google Scholar
  43. Preece, P. F. W. (1976). Mapping cognitive structure: A comparison of models. Journal of Educational Psychology, 68(1), 1–8. doi:10.1037/0022-0663.68.1.1.CrossRefGoogle Scholar
  44. Quillian, M. R. (1968). Semantic memory. In M. Minsky (Ed.), Semantic information processing (pp. 216–270). Cambridge, MA: MIT Press.Google Scholar
  45. Raudenbush, S. W., & Bryk, A. S. (2002). Hierarchical linear models. Applications and data analysis methods. Thousand Oaks, CA: SAGE Publications.Google Scholar
  46. Renkl, A., & Gruber, H. (1995). Erfasung von Veränderung: Wie und wieso? Zeitschrift fur Entwicklungspsychologie und Padagogische Psychologie, 27(2), 173–190.Google Scholar
  47. Rumelhart, D. E., & Norman, D. A. (1978). Accretion, tuning and restructuring: Three model of learning. In R. L. Klatzky & J. W. Cotton (Eds.), Semantic factors in cognition (pp. 37–53). Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
  48. Scheele, B., & Groeben, N. (1984). Die Heidelberger Struktur-Lege-Technik (SLT). Eine Dialog-Konsens-Methode zur Erhebung subjektiver Theorien mittlerer Reichweite. Weinheim: Beltz.Google Scholar
  49. Schvaneveldt, R. W. (1990). Pathfinder associative networks: Studies in knowledge organization. Norwood, NJ: Ablex Publishing Corporation.Google Scholar
  50. Seel, N. M. (1991). Weltwissen und mentale Modelle. Göttingen: Hogrefe.Google Scholar
  51. Seel, N. M. (1999). Educational diagnosis of mental models: Assessment problems and technology-based solutions. Journal of Structural Learning and Intelligent Systems, 14(2), 153–185.Google Scholar
  52. Seel, N. M. (2001). Epistemology, situated cognition, and mental models: ‘Like a bridge over troubled water’. Instructional Science, 29(4–5), 403–427. doi:10.1023/A:1011952010705.CrossRefGoogle Scholar
  53. Shavelson, R. J. (1972). Some aspects of the correspondence between content structure and cognitive structure in Physics education. Journal of Educational Psychology, 63(3), 225–234. doi:10.1037/h0032652.CrossRefGoogle Scholar
  54. Shavelson, R. J. (1974). Methods for examining representations of a subject-matter structure in student memory. Journal of Research in Science Teaching, 11(3), 231–249. doi:10.1002/tea.3660110307.CrossRefGoogle Scholar
  55. Shavelson, R. J., & Stanton, G. C. (1975). Construct validation: Methodology and application to three measures of cognitive structure. Journal of Educational Measurement, 12(2), 67–85. doi:10.1111/j.1745-3984.1975.tb01010.x.CrossRefGoogle Scholar
  56. Shute, V. J., & Zapata-Rivera, D. (2008). Using an evidence-based approach to assess mental models. In D. Ifenthaler, P. Pirnay-Dummer, & J. M. Spector (Eds.), Understanding models for learning and instruction: Essays in honor of Norbert M. Seel (pp. 23–42). New York: Springer.CrossRefGoogle Scholar
  57. Snow, R. E. (1989). Toward assessment of cognitive and conative structures in learning. Educational Researcher, 18(9), 8–14.Google Scholar
  58. Snow, R. E. (1990). New approaches to cognitive and conative assessment in education. International Journal of Educational Research, 14(5), 455–473.Google Scholar
  59. Snow, R. E., & Lohman, D. F. (1989). Implications of cognitive psychology for educational measurement. In R. L. Linn (Ed.), Educational measurement (pp. 263–331). New York: ACE/Macmillan.Google Scholar
  60. Spector, J. M., Dennen, V. P., & Koszalka, T. A. (2006). Causal maps, mental models and assessing acquisition of expertise. Technology, Instruction, Cognition and Learning, 3(2), 167–183.Google Scholar
  61. Spector, J. M., & Koszalka, T. A. (2004). The DEEP methodology for assessing learning in complex domains (Final report to the National Science Foundation Evaluative Research and Evaluation Capacity Building). Syracuse, NY: Syracuse University.Google Scholar
  62. Taber, K. S. (2000). Multiple frameworks?: Evidence of manifold conceptions in individual cognitive structure. International Journal of Science Education & Training, 22(4), 399–417.Google Scholar
  63. Tennyson, R. D., & Cocchiarella, M. J. (1986). An empirically based instructional design theory for teaching concepts. Review of Educational Research, 56(1), 40–71.Google Scholar
  64. Willett, J. B. (1988). Questions and answers in the measurement of change. Review of Research in Education, 15, 345–422.Google Scholar
  65. Young, M. J. (1998). Quantifying the characteristics of knowledge structure representations: A lattice-theoretic framework. Los Angeles, CA: CRESST.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Dirk Ifenthaler
    • 1
  • Iskandaria Masduki
    • 2
  • Norbert M. Seel
    • 1
  1. 1.Albert-Ludwigs-University FreiburgFreiburgGermany
  2. 2.Florida State UniversityTallahasseeUSA

Personalised recommendations