Instructional Science

, Volume 33, Issue 4, pp 341–366 | Cite as

Assessing schematic knowledge of introductory probability theory

  • Damian P. Birney
  • Gerard J. Fogarty
  • Ashley Plank
Article

Abstract

The ability to identify schematic knowledge is an important goal for both assessment and instruction. In the current paper, schematic knowledge of statistical probability theory is explored from the declarative-procedural framework using multiple methods of assessment. A sample of 90 undergraduate introductory statistics students was required to classify 10 pairs of probability problems as similar or different; to identify whether 15 problems contained sufficient, irrelevant, or missing information (text-edit); and to solve 10 additional problems. The complexity of the schema on which the problems were based was also manipulated. Detailed analyses compared text-editing and solution accuracy as a function of text-editing category and schema complexity. Results showed that text-editing tends to be easier than solution and differentially sensitive to schema complexity. While text-editing and classification were correlated with solution, only text-editing problems with missing information uniquely predicted success. In light of previous research these results suggest that text-editing is suitable for supplementing the assessment of schematic knowledge in development.

Keywords:

assessing schematic knowledge statistical probability theory text-editing 

References

  1. Anderson, J.R. 1982Acquisition of cognitive skillPsychological Review89369406CrossRefGoogle Scholar
  2. Anderson, J.R. 1990The Adaptive Character of Thought (Vol.1)ErlbaumNJ: HillsdaleGoogle Scholar
  3. Anderson, J.R., Milson, R. 1989Human memory: An adaptive perspectivePsychological Review96703719CrossRefGoogle Scholar
  4. Anderson, J.R., Neves, D.M. 1981

    Knowledge compilation: Mechanisms for the automatization of cognitive skills

    Anderson, J.R. eds. Cognitive Skills and their AcquisitionLawrence Erlbaum AssociatesHillsdale, NJ5784
    Google Scholar
  5. Anderson, J.R., Schunn, C.D. 2000

    Implications of the ACT-R learning theory: No magic bullets

    Glaser, R. eds. Advances in Instructional Psychology (Vol. 5)ErlbaumMahwah, NJ133
    Google Scholar
  6. Benaroch, M. 2001Declarative representation of strategic control knowledgeInternational Journal of Human–Computer Studies55881917CrossRefGoogle Scholar
  7. Birney, D.P., Halford, G.S. 2002Cognitive complexity of suppositional reasoning: An application of the relational complexity metric to the knight-knave taskThinking and Reasoning8109134CrossRefGoogle Scholar
  8. Braine, M.D.S. 1990

    The “Natural Logic” approach to reasoning

    Overton, W.F. eds. Reasoning, Necessity, and Logic: Developmental PerspectivesLawrence ErlbaumHillsdale, NJ133157
    Google Scholar
  9. Byrne, R.M.J., Handley, S.J. 1997Reasoning strategies for suppositional deductionsCognition62149CrossRefPubMedGoogle Scholar
  10. Carraher, T.N., Carraher, D., Schliemann, A.D. 1985Mathematics in the streets and in schoolsBritish Journal of Developmental Psychology32129Google Scholar
  11. Chandler, P., Sweller, J. 1991Cognitive load theory and the format of instructionCognition and Instruction8293332Google Scholar
  12. Chen, Z. 1999Schema induction in children’s analogical problem solvingJournal of Educational Psychology91703715CrossRefGoogle Scholar
  13. Cheng, P.W., Holyoak, K.J 1985Pragmatic reasoning schemasCognitive Psychology17391416CrossRefPubMedGoogle Scholar
  14. Chi, M.T., Fletovich, P.J.H., Glaser, R. 1981Categorization and representation of physics problems by experts and novicesCognitive Sciences5121152Google Scholar
  15. Chi, M.T., Glaser, R., Rees, E. 1982

    Expertise in problem solving

    Sternberg, R.J. eds. Advances in the Psychology of Human Intelligence (Vol. 1)Lawrence Erlbaum AssociatesHillsdale, New Jersey775
    Google Scholar
  16. Cohen, N.J., Poldrack, R.A., Eichenbaum, H. 1997Memory for items and memory for relations in the procedural/declarative memory frameworkMemory5131178PubMedGoogle Scholar
  17. Cook, M 2001

    Mathematics: The thinking arena for problem solving

    Costa, A.L. eds. Minds. A Resource Book for Teaching ThinkingASCDVA
    Google Scholar
  18. Cooper, G., Sweller, J. 1987Effects of schema acquisition and rule automation on mathematical problem-solving transferJournal of Educational Psychology79347362CrossRefGoogle Scholar
  19. Jong, T., Ferguson-Hessler, M. 1986Cognitive structures of good and poor novice problem solvers in physicsJournal of Educational Psychology78279288CrossRefGoogle Scholar
  20. Jong, T., Ferguson-Hessler, M. 1996Types and qualities of knowledgeEducational Psychologist31105113Google Scholar
  21. Garfield, J. (1994). Beyond testing and grading: Using assessment to improve student learning. Journal of Statistics Education, 2(1), Available online at http://www. amstat.org/publications/jse/v2n1/garfield.htmlGoogle Scholar
  22. Gick, M.L. 1986Problem-solving strategiesEducational Psychologist2199120Google Scholar
  23. Gick, M.L., Holyoak, K.J. 1983Schema induction and analogical transferCognitive Psychology15138CrossRefGoogle Scholar
  24. Halford, G.S. 1993Children’s Understanding: The Development of Mental ModelsLawrence Erlbaum AssociatesHillsdale, NJGoogle Scholar
  25. Hegarty, M., Koshevnikov, M. 1999Types of visual-spatial representations and mathematical problem solvingJournal of Educational Psychology91684689CrossRefGoogle Scholar
  26. Johnson-Laird, P.N., Byrne, R.M. 1991DeductionLawrence Erlbaum AssociatesHoveGoogle Scholar
  27. Kirasic, K.C., Allen, G.L., Dobson, S.H., Binder, K.S. 1996Aging, cognitive resources, and declarative learningPsychology and Aging11658670CrossRefPubMedGoogle Scholar
  28. Konold, C. (1995). Issues in assessing conceptual understanding in probability and statistics. Journal of Statitics Education, 3(1), Available online at http://www. amstat.org/publications/jse/v3n1/konold.htmlGoogle Scholar
  29. Littlefield, J., Rieser, J.J. 1993Semantic features of similarity and children’s strategies for identifying relevant information in mathematical story problemsCognition and Instruction11133188Google Scholar
  30. Low, R., Over, R. 1989Detection of missing and irrelevant information within algebraic story problemsBritish Journal of Educational Psychology59296305Google Scholar
  31. Low, R., Over, R. 1990Text editing of algebraic word problemsAustralian Journal of Psychology426373Google Scholar
  32. Low, R., Over, R. 1992Hierarchical ordering of schematic knowledge relating to area-of-rectangle problemsJournal of Educational Psychology846269CrossRefGoogle Scholar
  33. Low, R., Over, R. 1993Gender differences in solution of algebraic word problems containing irrelevant informationJournal of Educational Psychology85331339CrossRefGoogle Scholar
  34. Low, R., Over, R., Doolan, L., Michell, S. 1994Solution of algebraic word problems following training in identifying necessary and sufficient information within problemsAmerican Journal of Psychology107423439Google Scholar
  35. Mayer, R.E. 1982Memory for algebra story problemsJournal of Educational Psychology74199216CrossRefGoogle Scholar
  36. Ngu, B.H., Low, R., Sweller, J. 2002Text editing in chemistry instructionInstructional Science30379402CrossRefGoogle Scholar
  37. Novick, L.R., Hurley, S.M., Francis, M. 1999Evidence for abstract, schematic knowledge of three spatial diagram representationsMemory and Cognition27288308Google Scholar
  38. Nuñes, T. 1994

    Street intelligence

    Sternberg, R.J. eds. Encyclopedia of Human Intelligence (Vol. 2)MacmillanNew York10451049
    Google Scholar
  39. Piaget, J. (1950). The Psychology of Intelligence (M. Piercy & Berlyne., Trans.): Routledge & Kegan PaulGoogle Scholar
  40. Quilici, J.L., Mayer, R.E. 1996Role of examples in how students learn to categorise statistics word problemsJournal of Educational Psychology88144161CrossRefGoogle Scholar
  41. Quilici, J.L., Mayer, R.E. 2002Teaching students to recognize structural similarities between statistics word problemsApplied Cognitive Psychology16325342CrossRefGoogle Scholar
  42. Rips, L. 1983Cognitive processes in propositional reasoningPsychological Review903871CrossRefGoogle Scholar
  43. Rips, L. 1989The psychology of knights and knavesCognition3185116CrossRefPubMedGoogle Scholar
  44. Rips, L. 1994The Psychology of Proof: Deductive Reasoning in Human ThinkingMIT PressCambridge, MassGoogle Scholar
  45. Rittle-Johnson, B., Siegler, R.S., Alibali, M.W. 2001Developing conceptual understanding and procedural skill in mathematics: An iterative processJournal of Educational Psychology93346362CrossRefGoogle Scholar
  46. Rumelhart, D.E., Norman, D.A. 1981

    Analogical processes in learning

    Anderson, J.R. eds. Cognitive Skills and their Acquisition.Lawrence Erlbaurm AssociatesHillsdale, NJ335359
    Google Scholar
  47. Savelsbergh, E.R., Jong, T., Ferguson-Hessler, M. 2002Situational knowledge in physics: The case of electrodynamicsJournal of Research in Science Teaching39928951CrossRefGoogle Scholar
  48. Schoenfeld, A.H., Herrmann, D.J. 1982Problem perception and knowledge structure in expert and novice mathematical problem solversJournal of Experimental Psychology: Learning, Memory, and Cognition8484494Google Scholar
  49. Sweller, J. 1988Cognitive load during problem solving: Effects on learningCognitive Science12257285CrossRefGoogle Scholar
  50. Sweller, J. 1989Cognitive technology: Some procedures for facilitating learning and problem solving in mathematics and scienceJournal of Educational Psychology81457466CrossRefGoogle Scholar
  51. Sweller, J. 1993Some cognitive processes and their consequences for the organisation and presentation of informationAustralian Journal of Psychology4518Google Scholar
  52. Sweller, J., Chandler, P., Tierney, P., Cooper, M. 1990Cognitive load and selective attention as factors in the structuring of technical materialJournal of Experimental Psychology: General119176192CrossRefGoogle Scholar
  53. Sweller, J., Levine, M. 1982Effects of goal specificity on means-ends analysis and learningJournal of Experimental Psychology: Learning, Memory, and Cognition8463474Google Scholar
  54. Sweller, J., Mawer, R., Howe, W. 1982Consequences of history-cued and means-ends strategies in problem solvingAmerican Journal of Psychology95455483Google Scholar
  55. Sweller, J., Van Merriënboer, J., Paas, F. 1998Cognitive architecture and instructional designEducational Psychology Review10251296CrossRefGoogle Scholar
  56. University of Southern Queensland1993Unit 75002 Data Analysis Study BookDistance Education CentreToowoomba, USQGoogle Scholar
  57. Van Gog, T., Paas, F., Van Merriënboer, J. 2004Process-oriented worked examples: Improving transfer performance through enhanced understandingInstructional Science328398CrossRefGoogle Scholar
  58. Ward, M., Sweller, J. 1990Structuring effective worked examplesCognition and Instruction7130Google Scholar
  59. Woltz, D.J. 1988An investigation of the role of working memory in procedural skill acquisitionJournal of Experimental Psychology. General117319331CrossRefGoogle Scholar
  60. Woltz, D.J., Gardner, M.K., Gyll, S.P. 2000The role of attention processes in near transfer of cognitive skillsLearning and Individual Differences12209251CrossRefGoogle Scholar
  61. Zhu, X., Simon, H.A. 1987Learning mathematics from examples and by doingCognition and Instruction4137166Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Damian P. Birney
    • 1
  • Gerard J. Fogarty
    • 2
  • Ashley Plank
    • 2
  1. 1.School of PsychologyUniversity of SydneyNSW, SydneyAustralia
  2. 2.University of Southern QueenslandQueenslandAustralia

Personalised recommendations