Skip to main content
Log in

Genetic characterization of domestic pigs in the core zone of swine production of Argentina

  • Regular Articles
  • Published:
Tropical Animal Health and Production Aims and scope Submit manuscript

Abstract

Argentina is a small player in the global pork market, contributing only 0.7% of the total production. With increasing global demand for meat, there is an opportunity for countries with an agricultural profile to grow their pork production. However, there is a need to understand the current state of the pork production sector in all aspects to inform decision-making. The aim of this study was to genetically characterize pig herds from different production strata in the primary region for pork production in the country. For this purpose, phylogenetic and genetic variability analyses were performed using the mitochondrial control region marker (n=95 pig samples). Moreover, genotyping of ryr1 and PRKAG3 genes (n=108 pig samples) were performed to evaluate the frequency of deleterious alleles for meat quality traits in the region. The results showed high levels of genetic variability in the pig herds (Hd= 0.840 ± 0.031 and π= 0.010 ± 0.001), with a creole sow and Iberian lineage standing out in the phylogeny. The genotyping of the ryr1 marker revealed the presence of the deleterious t allele in all analyzed strata. However, the RN-allele of the PRKAG3 gene was detected only in the two lower strata. This study represents the first analysis of the phylogenetic relationships among domestic pigs from Argentina and provides an initial assessment of genetic variability in the region. Additionally, the results present, for the first time, the frequency of deleterious alleles for pig production in the productive core area, demonstrating their prevalence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Control region sequences used for variability calculations and phylogeny construction are available in the GenBank database, under accession number OQ802787 to OQ802809.

References

  • Acosta, D.B., Español, L.A., Figueroa, C.E., Marini, S.J., Mac Allister, M.E., Carpinetti, B.N., Fernández, G.P., Merino, M.L., 2021. Wild pigs (Sus scrofa) population as reservoirs for deleterious mutations in the RYR1 gene associated with Porcine Stress Syndrome. Veterinary and Animal Science, 11, 100160.

    Article  PubMed  Google Scholar 

  • Acosta, D.B., Figueroa, C.E., Fernández, G.P., Carpinetti, B.N., Merino, M.L., 2019. Genetic diversity and phylogenetic relationships in feral pig populations from Argentina. Mammalian Biology, 99, 27-36.

    Article  Google Scholar 

  • Alves, P.C., Pinheiro, I., Godinho, R. Vicente, J., Gortázar, C., Scandura, M., 2010. Genetic diversity of wild boar populations and domestic pig breeds (Sus scrofa) in South-western Europe. Biological Journal of the Linnean Society, 101(4), 797-822.

    Article  Google Scholar 

  • Benés, G., Cendon, M., 2013. La cadena de la carne porcina en la provincia de Buenos Aires. In: D.H. Iglesias and G. Ghezan (eds), Análisis de la cadena de la carne porcina en Argentina. Estudios Socioeconómicos de los Sistemas Agroalimentarios y Agroindustriales N°12, (INTA: Argentina), 55-69.

    Google Scholar 

  • Benítez Ortiz, W., Sánchez, D.M., 2001. Los cerdos criollos en América Latina. In: W. Benítez Ortiz and D.M. Sánchez (eds), Los cerdos locales en los sistemas tradicionales de producción, (FAO. Roma), 13-35.

  • Bouckaert, R., Vaughan, T.G., Barido-Sottani, J., Duchêne, S., Fourment, M., Gavryushkina, A., Heled, J., Jones, G., Kühnert, D., De Maio, N., Matschiner, M., Mendes, F.K., Müller, N.F., Ogilvie, H.A., du Plessis, L., Popinga, A., Rambaut, A., Rasmussen, D., Siveroni, I., Suchard, M.A., Wu, C-H., Xie, D., Zhang, C., Stadler, T., Drummond, A.J., 2019. BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis. PLoS computational biology, 15(4), e1006650.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Britt, B.A., 1991. Malignant hyperthermia: A review. In: E. Schonbaum and P. Lomax (eds), Thermoregulation: Pathology, Pharmacology and Therapy, (Pergamon: New York), 179-292.

    Google Scholar 

  • Calzada, J., Corina, S., 2019. El 74% de la producción de los seis principales cultivos se encuentra a 300 Km de los puertos del Gran Rosario, Quequén y Bahía Blanca. Informativo semanal. (Bolsa de Comercio de Rosario: Rosario, Argentina).

    Google Scholar 

  • Castro, G., Fernández, G., Delgado, J.V., Rodríguez, D., 2003. A Contribution to the Racial Study of the Uruguayan Wattled Pig. Archivos de Zootecnia, 52, 265-271.

    Google Scholar 

  • Chen, H., Huang, M., Yang, B., Wu, Z, W., Deng, Z., Hou, Y., Ren, J., Huang, L., 2020. Introgression of Eastern Chinese and Southern Chinese haplotypes contributes to the improvement of fertility and imnunity in European modern pigs. GigaScience, 9, 1-13.

  • Cherel, P., Glénisson, J., Figwer, P., Pires, J., Damon, M., Franck, M., Le Roy, P., 2010. Updated estimates of HAL n and RN- effects on pork quality: Fresh and processed loin and ham. Meat Science, 86, 949-954.

    Article  CAS  PubMed  Google Scholar 

  • Choi, B.H., Lee, K.T., Lee, H.J., Jang, G.W., Lee, H.Y., Cho, B.W., Han, J.Y., Kim, T.H., 2012. Detection of Quantitative Trait Loci affecting Fat Deposition Traits in Pigs. Asian-Australasian Journal of Animal Sciences, 25(11), 1507-1510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ciobanu, D., Bastiaansen, J., Malek, M., Helm, J., Woollard, J., Plastow, G., Rothschild, M., 2001. Evidence for New Alleles in the Protein Kinase Adenosine Monophosphate- Activated γ3-Subunit Gene Associated With Low Glycogen Content in Pig Skeletal Muscle and Improved Meat Quality. Genetics, 159, 1151-1162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Closter, A.M., Guldbrandtsen, B., Henryon, M., Nielsen, B., Berg, P., 2011. Consequences of elimination of the Rendement Napole allele from Danish Hampshire. Journal of Animal Breeding and Genetics, 128(3), 192-200.

    Article  CAS  PubMed  Google Scholar 

  • Darriba, D., Taboada, G.L., Doallo, R., Posada, D., 2012. jModelTest 2: more models, new heuristics and parallel computing. Nature Methods, 9(8), 772-776.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Estrade, M., Vignon, X., Rock, E., Monin, G., 1993. Glycogen Hyperaccumulation in white muscle fibres of RN- carrier pigs. A biochemical and ultrastructural study. Comparative Biochemistry and Physiology, 104B(2), 321-326.

    CAS  Google Scholar 

  • Fang, M., Andersson, L., 2006. Mitochondrial diversity in European and Chinese pigs is consistent with population expansions that occurred prior to domestication. Proceedings of the Royal Society, 273(1595), 1803-1810.

    Google Scholar 

  • Fávero, J.A., Pereira de Figueiredo, A., 2009. Evolução do melhoramento genético de suínos no Brasil. Revista Ceres, 58(4), 420-427.

    Google Scholar 

  • Figueroa, C.E., Acosta, D.B., Mac Allister, M.E., Merele, M., Fernández, G.P., Carpinetti, B.N., Winter, M., Abate, S., Barandiaran, S., Merino, M.L., 2022. Patterns of genetic variation on wild pig (Sus scrofa) populations over a complete range of the species in Argentina. Mammalia, 86(4), 359-372.

    Article  Google Scholar 

  • Freitas, A.B., Rosado, M.M., 2014. A introdução dos suínos no Brasil. In: S.F.O. Lima (edLas Razas Porcinas Iberoamericanas. Un Enfoque Etnozootécnico, (Instituto Federal Baiano, Campus Valença: Salvador, Brasil), 39-54.

    Google Scholar 

  • Giuffra E., Kijas, J.M., Amarger, V., Carlborg, O., Jeong, J.T., Andersson, L., 2000. The Origin of the Domestic Pig: Independent Domestication and Subsequent Introgression. Genetics, 154(4), 1785-1791.

  • Gjerlaug-Enger, E., Aass, L., Ødegard, J., Vangen, O., 2010. Genetic parameters of meat quality traits in two pig breeds measured by rapid methods. Animal, 4(11), 1832-1843.

    Article  CAS  PubMed  Google Scholar 

  • Gorga, L., 2018. Cadena de carne de cerdo: situación y perspectivas. Ministerio de Agricultura, Ganadería y Pesca de la República Oriental del Uruguay, Anuario OPYPA 2018, Uruguay.

  • Hall, T.A., 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41, 95-98.

    CAS  Google Scholar 

  • Hamilton, D.N., Ellis, M., Miller, K.D., McKeith, F.K., Parrett, D.F., 2000. The effect of the Halothane and Rendement Napole genes on carcass and meat quality characteristics of pigs. Journal of Animal Science, 78, 2862-2867.

    Article  CAS  PubMed  Google Scholar 

  • Huo, J.H., Wei, Q.P., Wan, M.C., Liu, L.X., Hu, L.F., Zhou, Q.Y., Xiong, L.G., Yang, Q., Wu, Y.P., 2014. Population phylogenomic analysis and origin of mitochondrial DNA in Chinese domestic pig. Mitochondrial DNA Part A, 27(2), 892-895.

    Article  CAS  Google Scholar 

  • INDEC, 2020. Censo Nacional Agropecuario 2018: resultados preliminares, ganadería / 1a (Instituto Nacional de Estadística y Censos, Ciudad Autónoma de Buenos Aires).

    Google Scholar 

  • Josell, Á., Enfält, A-C., von Seth, G., Lindahl, G., Hedebro-Velander, I., Andersson, L., Lundström, K., 2003. The influence of RN genotype, including the new V199I allele, on the eating quality of pork loin. Meat Science, 65, 1341-1351.

  • Kijas, J.H.M., Wales, R., Tornsten, A., Chardon, P., Moller, M., Andersson, L., 1998. Melanocortin receptor 1 (MC1R) mutations and coat color in pigs. Genetics, 150, 1177-1185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kijas, J.M.H., Andersson, L., 2001. A Phylogenetic Study of the Origin of the Domestic Pig Estimated from the Near-Complete mtDNA Genome. Journal of Molecular Evolution, 52, 302-308.

    Article  CAS  PubMed  Google Scholar 

  • Knox R.V., 2015. Artificial insemination in pigs today. Theriogenology, 10, 1-11.

    Google Scholar 

  • Kumar, S., Stecher, G., Tamura, K., 2016. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for Bigger Datasets. Molecular Biology and Evolution, 33(7), 1870-1874.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kusza, S., Podgorski, T., Scandura, M., Borowik, T., Javor, A., Sidorovich, V.E., Bunevich, A.N., Kolesnikov, M., Jędrzejewska, B., 2014. Contemporary genetic structure, phylogeography and past demographic processes of wild boar Sus scrofa population in Central and Eastern Europe. PloS one, 9(3), e91401.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lagadari, M., Fabre, R.M., Jenko, C., Markiewicz, G.A., Rodriguez, V.R., 2019. Caracterización genotípica de cerdos para mejora de la calidad de carne. Ciencia, Docencia y Tecnología, 9(9), 110-121.

    Google Scholar 

  • Larson, G., Dobney, K., Albarella, U., Fang, M., Matisoo-Smith, E., Robins, J., Lowden, S., Finlayson, H., Brand, T., Willerslev, E., Rowley-Conwy, P., Andersson, L., Cooper, A., 2005. Worldwide Phylogeography of Wild Boar Reveals Multiple Centers of Pig Domestication. Science, 307, 1618-1621.

    Article  CAS  PubMed  Google Scholar 

  • Lemus, C., 2008. Diversidad genética del cerdo criollo mexicano. Revista Computadorizada de Producción Porcina, 15(1), 33-40.

    Google Scholar 

  • Librado, P., Rozas, J., 2009. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics, 25(11), 1451-1452.

    Article  CAS  PubMed  Google Scholar 

  • Lindahl, G., Enfält, A-C., von Seth, G., Josell, A., Hedebro-Velander, I., Andersen, H.J., Braunschweig, M., Andersson, L., Lundström, K., 2004. A second mutant allele (V199I) at the PRKAG3 (RN) locus-I. Effect on technological meat quality of pork loin. Meat Science, 66, 609-619.

    Article  CAS  PubMed  Google Scholar 

  • Lundström, K., Andersson, A., Hansson, I., 1996. Effect of the RN gene on technological and sensory meat quality in crossbred pigs with Hampshire as terminal sire. Meat Science, 42(2), 145-153.

    Article  PubMed  Google Scholar 

  • Mariante, A.S., Castro, S.T.R., Albuquerque, M.do S.M., Paiva, S.R., Germano, J.L., 2003. Pig Biodiversity in Brazil. Archivos de Zootecnia, 52: 245-248.

  • Marini, S.J., Vanzetti, L.S., Borelli, V.S., Villareal, A.O., Denegri, G.D., Cottura, G.A., Panichelli, D., Silva, P., Campagna, D., Spiner, N., Brunori, J.C., Franco, R., 2012. RYR1 gene variability and effect on meat pH in Argentinean hybrids swines. Investigación Veterinaria, 14(1), 19-23.

    Google Scholar 

  • Martínez-Quintana, J.A., Alarcón Rojo, A.D., Ortega Gutiérrez, J.A., Janacua-Vidales, H., 2006. Incidencia de los genes halotano y Rendimiento Napole y su efecto en la calidad de la carne de cerdo. Universidad y ciencia, 22(2), 131-139.

    Google Scholar 

  • McCann, B.E., Malek, M.J., Newman, R.A., Schmit, B.S., Swafford, S.R., 2014. Mitochondrial Diversity Supports Multiple Origins for Invasive Pigs. The Journal of Wildlife Management, 78(2), 202-213.

    Article  Google Scholar 

  • McManus, C., Rezende Paiva, S., Rezende Silva, A.V., Sayori Murata, L., Louvandini, H., Barrera Cubillos, G.P., Castro, G., Martinez, R.A., Llambi Dellacasa, M.S., Perez, J.E., 2010. Phenotypic Characterization of Naturalized Swine Breeds in Brazil, Uruguay and Colombia. Brazilian Archives of Biology and Technology, 53(3), 583-591.

    Article  Google Scholar 

  • Meadus, W.J., MacInnis, R., Dugan, M.E.R., Aalhus, J.L., 2002. A PCR-RFLP method to identify the RN- gene in retailed pork chops. Canadian Journal of Animal Science, 82(3), 449-451.

    Article  CAS  Google Scholar 

  • Milan, D., Jeon, J.T., Looft, C., Amarger, V., Robic, A., Thelander, M., Rogel-Gaillard, C., Paul, S., Iannuccelli, N., Rask, L., Ronne, H., Lundström, K., Reinsch, N., Gellin, J., Kalm, E., Le Roy, P., Chardon, P., Andersson, L., 2000. A Mutation in PRKAG3 Associated with Excess Glycogen Content in Pig Skeletal Muscle. Science, 288(5469), 1248-1251.

  • Miller, K.D., Ellis, M., McKeith, F.K., Bidner, B.S., Meisinger, D.J., 2000. Frequency of the Rendement Napole RN- allele in a population of American Hampshire pigs. Journal of Animal Science, 78, 1811-1815.

    Article  CAS  PubMed  Google Scholar 

  • Ministerio de Agricultura, Ganadería y Pesca, 2021. Anuario Porcino 2021. (MAgyP: Argentina).

    Google Scholar 

  • Ministerio de Agricultura, Ganadería y Pesca, 2022. Anuario Porcino 2022. (MAgyP: Argentina).

    Google Scholar 

  • Montenegro, M., Castro, G., Barlocco, N., Llambi, S., 2010. Frecuencia alélica del Síndrome de Estrés Porcino en Uruguay (análisis por PCR-RFLP). Veterinaria, 46(177-180), 23-26.

    Google Scholar 

  • Otsu, K., Phillips, M.S., Khanna, V.K., De Leon, S., MacLennan, D.H., 1992. Refinement of diagnostic assays for a probable causal mutation for porcine and human hyperthermia. Genomics, 13(3), 835-837.

    Article  CAS  PubMed  Google Scholar 

  • Pommier, S., Pomar, C., Godbout, D., 1998. Effect of the halothane genotype and stress on animal performance, carcass composition and meat quality of crossbred pigs. Canadian Journal of Animal Science, 78, 257-264.

    Article  Google Scholar 

  • Rege, J.E.O., Gibson, J.P., 2002. Animal genetic resources and economic development: issues in relation to economic valuation. Ecological Economics, 45, 319-330.

    Article  Google Scholar 

  • Revidatti, M.A., 2009. Caracterización de cerdos criollos del nordeste argentino. PhD thesis, Universidad de Córdoba, España.

    Google Scholar 

  • Revidatti, M.A., Capellari, A., Prieto, P.N., Delgado, J.V., 2005. Recurso Genético porcino autóctono en el Nordeste de la República Argentina. Archivos de Zootecnia, 54, 97-100.

    Google Scholar 

  • Rodriguez, V.R., Maffioly, J.I., Zdanovicz, L.A., Fabre, R.M., Barrandeguy, M.E., García, M.V., Lagadari, M., 2022. Genetic diversity of meat quality related genes in Argentinean pigs. Veterinary and Animal Science, 15, 100237.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sagua, M.I., Figueroa, C.E., Acosta, D.B., Fernández, G.P., Carpinetti, B.N., Birochio, D., Merino, M.L., 2018. Inferring the origin and genetic diversity of the introduced wild boar (Sus scrofa) populations in Argentina: an approach from mitochondrial markers. Mammal Research, 163(4), 467-476.

    Article  Google Scholar 

  • Salas, R.C.D., Mingala, C.N., 2016. Genetic factors affecting pork quality: halothane and rendement napole genes. Animal Biotechnology, 28(2), 148-155.

    Article  PubMed  Google Scholar 

  • Salcedo, S., De la O, A.P., Guzmán, L., 2014. El concepto de agricultura familiar en América latina y el Caribe. In: S. Salcedo, L. Guzmán (eds), Agricultura familiar en América y el Caribe, recomendaciones de política (FAO: Santiago, Chile), 17-34.

  • Sambrook, J., Russell, D.W., 2006. Rapid isolation of yeast DNA. Cold Spring Harbor Protocols, 2006(1), 631-632.

    Google Scholar 

  • Santana, I., 2001. Conservación y mejora del cerdo criollo cubano. Revista Computadorizada de Producción Porcina, 8(1), 5-22.

    Google Scholar 

  • Scandura, M., Iacolina, L., Apollonio, M., 2011. Genetic diversity in the European wild boar Sus scrofa: phylogeography, population structure, and wild x domestic hybridization. Mammal Review, 41, 125-137.

    Article  Google Scholar 

  • Scandura, M., Iacolina, L., Crestanello, B., Pecchioli, E., Di Benedetto, M.F., Russo, V., Davoli, R., Apollonio, M., Bertorelle, G., 2008. Ancient vs. recent processes as factors shaping the genetic variation of the European wild boar: are the effects of the last glaciation still detectable?. Molecular Ecology, 17, 1745-1762.

    Article  CAS  PubMed  Google Scholar 

  • Secretaría de Agricultura, Ganadería y Pesca, 2022. Boletín porcino, Noviembre 2022. Ministerio de economía de Argentina, Buenos Aires, Argentina.

    Google Scholar 

  • Watanobe, T., Ishiguro, N., Okumura, N., Nakano, M., Matsui, A., Hongo, H., Ushiro, H., 2001. Ancient mitochondrial DNA reveals the origin of Sus scrofa from Rebun Island, Japan. Journal of Molecular Evolution, 52(3), 281-289.

    Article  CAS  PubMed  Google Scholar 

  • Windig, J.J., Eding, H., Moll, L., Kaal, L., 2004. Effects on inbreeding of different strategies aimed at eliminating scrapie sensitivity alleles in rare sheep breeds in The Netherlands. Cytogenetic and Genome Research, 79, 11-20.

    Google Scholar 

  • Zhang, J., Jiao, T., Zhao, S., 2016. Genetic diversity in the mitochondrial DNA D-loop region of global swine (Sus scrofa) populations. Biochemical and Biophysical Research Communications, 473(4), 814-820

Download references

Acknowledgements

We thank all the pig producers who provided samples to carry out this work. We also express our gratitude to SENASA authorities Ignacio Paradela, Martin Becerra y Juan Carlos Sotera, as well as to the veterinarian Angel Patitucci for his collaboration in the samplings.

Funding

This research was funded by Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); FONCYT, PICTO 2019-00010; and Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Argentina (Grant number: SIB Exp. 2091/22).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation and data collection were performed by all authors. Analyses were performed by Carlos Ezequiel Figueroa. The first draft of the manuscript was written by Carlos Ezequiel Figueroa, and all authors contributed, checked, and approved the final version of the manuscript.

Corresponding author

Correspondence to M. L. Merino.

Ethics declarations

Ethics approval

Animals from which tissue samples were obtained were not sacrificed specifically for the purposes of this study. No ethical approval is required.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(XLSX 12.8 kb)

ESM 2

(XLSX 24.7 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Figueroa, C.E., Mac Allister, M.E., Acosta, D.B. et al. Genetic characterization of domestic pigs in the core zone of swine production of Argentina. Trop Anim Health Prod 56, 20 (2024). https://doi.org/10.1007/s11250-023-03852-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11250-023-03852-5

Keywords

Navigation