Skip to main content
Log in

Incorporation of ω3 fatty acids in the diets of Nile tilapia juvenile (Oreochromis niloticus L.): effects on growth performance, fatty acid composition, and tolerance to low temperature

  • Regular Articles
  • Published:
Tropical Animal Health and Production Aims and scope Submit manuscript

Abstract

In order to increase the low-temperature resistance of Nile tilapia, the purpose of this study was to determine the potential effect of ω3 fatty acid incorporation in Oreochromis niloticus diet. To perform this, two experimental diets containing soybean oil (D1) and cod liver oil (D2) have been supplied to juvenile tilapia for 30 days. According to our results, similar improvements in the two diets have been recorded for growth performance of O. niloticus including the final body mass, specific growth rate, and feed conversion ratio. Our results showed that fish fed with diet D2 promoted high polyunsaturated fatty acids mainly n-3 series (PUFA (n-3)) percent, highlighting the increased levels of docosahexaenoic (DHA) and eicosapentaenoic (EPA) as well as the activation of their conversion enzyme ratios D5D and D6D desaturases. The second objective was to assess the effect of the two experimental diets on low water temperature tolerance. This was done by exposing juvenile fish at the end of the first experiment to 16, 14, 12, 10, and 8 °C for 12 h, 24 h, and 48 h. The sub-lethal LT50 of O. niloticus fed with diet D1 was 10.6, 11.4, and 13 °C respectively, after 12 h, 24 h, and 48 h. This pattern was commonly observed for O. niloticus fed with D2, showing that the subLT50 were 10.3, 11.1, and 12 °C during the same period. These results demonstrate that O. niloticus juveniles fed with diet D2 are more tolerant to low temperatures than those fed with diet D1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

Abbreviations

ARA:

Arachidonic acid

D5D:

Δ5-Desaturase

D6D:

Δ6-Desaturase

D9D:

Δ9-Desaturase = stearoyl-CoA-desaturase

DPA:

Docosapentaenoic acid

DHA:

Docosahexaenoic acid

EPA:

Eicosapentaenoic acid

ELOVL6:

Elongase

LA:

Linoleic acid

ND:

None determined

MUFA:

Monounsaturated fatty acids

PUFA:

Polyunsaturated fatty acids

SFA:

Saturated fatty acids

subLT:

Sub-lethal temperatures

subLT50 :

Sub-lethal temperatures 50

References

  • Al-Souti, A., Al-Sabahi, J., Soussi. B and Goddard, S., 2012. The effects of fish oil-enriched diets on growth, feed conversion and fatty acid content of red hybrid tilapia, Oreochromis sp, Food Chemistry,133,723-727.https://doi.org/10.1016/j.foodchem.2012.01.080.

    Article  CAS  Google Scholar 

  • Atwood, H. L., Tomasso, R., Webb, K. and Gatlin, D.M., 2003. Low temperature tolerance of Nile tilapia, 0reochromis niloticus: effects of environmental and dietary factors, Aquaatic Research , 34 (3), 241-251.https://doi.org/10.1046/j.1365-2109.2003.00811.x

    Article  Google Scholar 

  • Azaza, M.S., Dhraief, M.N. and Kraiem, M.M., 2008. Effects of water temperature on growth and sex ratio of juvenile Nile tilapia Oreochromis niloticus (Linnaeus) reared in geothermal waters in southern Tunisia. Journal of Thermal Biology, 33, 98–105. https://doi.org/10.1016/j.jtherbio.2007.05.007

    Article  Google Scholar 

  • Azaza, M.S., Mensi F., Wassim K., Abdelmouleh A., Brini B. and, Kraim M.M., 2009. Nutritional evaluation of waste date fruit as partial substitute for soybean meal in practical diets of juvenile Nile tilapia, Oreochromis niloticus L, Aquaculture Nutrition, 15, 262-272.

    Article  CAS  Google Scholar 

  • Azaza M.S., Legendre M., Kraim M.M. and Baras E., 2010. Size-dependent effects of fluctuating thermal regimes on the growth and size heterogeneity of Nile tilapia, Journal of Fish Biology, 76 (3), 669-683.

    Article  CAS  Google Scholar 

  • Bahurmiz, O.M. and Ng, W.K., 2007. Effects of dietary palm oil source on growth, tissue fatty acid composition and nutrient digestibility of red hybrid tilapia, Oreochromis sp., raised from stocking to marketable size, Aquaculture, 262, 382–392. https://doi.org/10.1016/j.aquaculture.2006.11.023

    Article  CAS  Google Scholar 

  • Barthet, V.J., 2008. (n-7) and (n-9) cis-monounsaturated fatty acid contents of 12 brassica species , Phytochemistry, 69(2), 411-411. https://doi.org/10.1016/j.phytochem.2007.08.016

    Article  CAS  Google Scholar 

  • Bell, J.G. and Sargen, J.R., 2003.Arachidonic acid in aquaculture feeds: current status and future opportunities, Aquaculture, 218, 491-499. doi: https://doi.org/10.1016/S0044-8486(02)00370-8.

    Article  CAS  Google Scholar 

  • Cecchi, G, Basini, S., andCastano, C., 1985. Methanolyse rapide des huiles en solvant, Revue française des corps gras, 4 , 163–164.

    Google Scholar 

  • Charo-Karisa, H., Komen, H., Rezk, M. A., Ponzoni, R.W., Van Arendonk, J. and Bovenhuis, H., 2006 Heritability estimates and response to selection for growth of Nile tilapia (Oreochromis niloticus) in low-input earthen ponds, Aquaculture, 261(2), 479-486.

    Article  Google Scholar 

  • Cnaani, A., Hallerman, E.M., Ron, M., Weller, J. I., Indelman, M., Kashi, Y., Gall, G.A.E. and Hulata, G., 2003. Detection of a chromosomal region with two quantitative trait loci, affecting cold tolerance and fish size, in an F2 tilapia hybrid, Aquaculture, 223,117- 128. https://doi.org/10.1016/S0044-8486(03)00163-7

    Article  CAS  Google Scholar 

  • Cou, B.S.and Shiau, S.Y., 2001. Effect of Dietary Cod Liver Oil on Growth and Fatty Acids of Juvenile Hybrid tilapia, North American Journal of Aquaculture, 63, 277-284. https://doi.org/10.1577/15488454(2001)063<0277:EODCLO>2.0.CO;2

  • Corrêa, C.F., Nobrega, O.R., Block, J.M. and Fracalossi, D.M., 2018. Mixes of plant oils as fish oil substitutes for Nile tilapia at optimal and cold suboptimal temperature.Aquaculture, 497,82-90. https://doi.org/10.1016/j.aquaculture.2018.07.034

  • Da Costa, F., Robert, R., Quéré, C. and Wikfors, G., Soudant, P., 2015. Essential Fatty acid assimilation and synthesis in larvae of the bivalve Crassostrea gigas. Lipids, 50(5), 503-511. https://doi.org/10.1007/BF00004290.

    Article  Google Scholar 

  • Dhillon, R. S. and Fox, M. G., 2007. Growth-independent effects of temperature on age and size at maturity in Japanese Medaka (Oryzias latipes). Copeia, http://doi.org/10.1643/CI-02-098R1

  • FAO., 2014. The state of world fisheries and aquaculture p. 223.

  • Folch, J., Lees, M. and Stanley, G., 1957. A simple method of the isolation and purification of total lipids from animal tissues, Journal of Biological Chemistry, 226, 497- 509. https://doi.org/10.1016/S0021-9258(18)64849-5

    Article  CAS  Google Scholar 

  • FAO’s Fisheries and Aquaculture Department., 2020 Statistical Collections Capture Production and Aquaculture Production Datasets 1950–2019 (Release Date: March 2020). Available online: https://www.fao.org/shery/topic/16073. Accessed 25 March 2020

  • Flodmark , L. E. W., Vollestad, L. A. and Foresth, T.,2004. Performance of juvenile brown trout exposed to fluctuating water level and temperature. Journal of Fish Biology, 65, 460–470. https://doi.org/10.1111/j.1095-8649.2004.00463.x.

  • HMSO, U.K., 1994. Nutritional aspects of cardiovascular disease (report on health and social subject’s No. 46), London: HMSO.

  • Hofer SC, and Watts SA, 2002. Cold tolerance in genetically male tilapia (GMT registered), Oreochromis niloticus.World Aquaculture, 33,19–21

  • Kanazawa, A., Teshima, S., Sakamoto, M. and Awal, M.A., 1980. Requirement of Tilapia zilii for essential fatty acids. Bulletin of the Japanese Society for the Science of Fish , 46, 1353-1356. https://doi.org/10.2331/suisan.49.1127

    Article  CAS  Google Scholar 

  • Kotronen, A., Laakso, T.S., Westerbacka, J., Kiviluoto, T., Arola, J., Ruskeepää, A.L., Järvinen, H.Y. and Oresic; M., 2010. Comparison of lipid and fatty acid composition of the liver, subcutaneous and intra-abdominal adipose tissue, and serum, Obesity, 18(5), 937–944. https://doi.org/10.1038/oby.2009.326

    Article  CAS  Google Scholar 

  • Kraїem, M.M., Duvernay, J., 1981. Comparaison des températures limites de nage chez deux populations d’Ombres Communs Thymalus thymalus (L.), d’origine différente (Bavière et Scandinavie), Cybium, 5 (3), 45–49.

  • Li, S., Li, C., Madan,D., Florabelle,G. and Rex. D., 2002. Cold tolerance of three strains of Nile tilapia, Oreochromis niloticus, in China. Aquaculture, 213(1–4),123-129.

    Google Scholar 

  • Li, E., Lim, C., Klesius, P.H. and Welker, T.L., 2013. Growth, body fatty acid composition, immune response, and resistance to Streptococcus iniae of hybrid tilapia, Oreochromis niloticus × Oreochromis Aureus, fed diets containing various levels of linoleic and linolenic acids. Journal of World Aquaculture Society, 44, 42–55. https://doi.org/10.1111/jwas.12014.

    Article  Google Scholar 

  • Lim, C., Yildirim-Aksoy, M. and Klesius, P. 2011. Lipid and fatty acid requirements of tilapias, North American Journal of aquaculture, 73, 188–193. https://doi.org/10.1080/15222055.2011.579032

    Article  Google Scholar 

  • Lu, D.L., Ma, Q., Wang, J., Li, L.Y., Han, S. L., Limbu, S.M., Li, D.L., Chen, L.Q., Zhang, M.L. and Du, Z.Y., 2019. Fasting enhances cold resistance in fish through stimulating lipid catabolism and autophagy. Journal of Physiology, 597(6), 1585–1603. https://doi.org/10.1113/JP277091

    Article  CAS  Google Scholar 

  • Marques, A., Teixeira, B., Barrento, S., Anacleto, P., Carvalho, M.L .and Nunes, M.L., 2010. Chemical composition of Atlantic spider crab Maja brachydactyla: human health implication. Journal of Food Composition and Analysis, 23, 230-237.

    Article  CAS  Google Scholar 

  • Montero, D., Robaina, L., Caballero, M.J., Ginés, R. and Izquierdo, M.S., 2005. Growth, feed utilization and flesh quality of European sea bass (Dicentrarchus labrax) fed diets containing vegetable oils: a time-course study on the effect of a re-feeding period with a 100% fish oil diet, Aquaculture, 248, 121-134.

    Article  Google Scholar 

  • National Research Council (NRC)., 2011. Nutrient Requirement of Fish. Committee on Animal Nutrition, Board on Agriculture,( National Academic Press. Washington, DC), pp, 102–134.

  • Nemova, N.N., Fokina, N.N., Nefedova, Z.A., Ruokolainen, T.R. and Bakhmet, I.N., 2013. Modifications of gill lipid composition in littoral and cultured blue mussels Mytilus edulis L. under the influence of ambient salinity, Polar Record, 49 (250), 272–277. https://doi.org/10.1017/S0032247412000629

    Article  Google Scholar 

  • Ng, W.K., Lim, P.K. and Sidek, H., 2001. The influence of a dietary lipid source on growth, muscle fatty acid composition and erythrocyte osmotic fragility of hybrid tilapia, Fish Physiology Biochemistry, 25, 301-310. https://doi.org/10.1023/A:1023271901111

    Article  Google Scholar 

  • Pandit, N. P. and Nakamura, M., 2010. Effect of High Temperature on Survival, Growth and Feed Conversion Ratio of Nile Tilapia, Oreochromis Niloticus, Our Nature, 8, 219-224. https://doi.org/10.3126/on.v8i1.4331

    Article  Google Scholar 

  • Rioux, V., Catheline, D., Bouriel, M., Legrand, P., 2005. Dietary myristic acid at physiologically relevant levels increases the tissue content of C20:5 n-3 and C20:3 n-6 in the rat. Reproduction Nutrition and Developpement, 45, 599-612. https://doi.org/10.1051/rnd:2005048

    Article  CAS  Google Scholar 

  • Rabei, A., Hichami, A., Beldi, H., Bellenger, S., Khan, N.A. and. Soltani,.N., 2018. Fatty acid composition, enzyme activities and metallothioneins in Donax trunculus (Mollusca, Bivalvia) from polluted and reference sites in the Gulf of Annaba (Algeria): pattern of recovery during transplantation. Environmental Pollution, 237, 900–907. https://doi.org/10.1016/j.envpol.2018.01.041

  • Senadheera, S.D., Turchini, G.M., Thanuthong. and T., Francis, D.S., 2011. Effects of dietary α-linolenic acid (18:3n-3)/linoleic acid (18:2n-6) ratio on fatty acid metabolism in Murray cod (Maccullochella peelii peelii). Journal of Agriculture Food Chemistry, 59, 1020-1030. https://doi.org/10.1021/jf104242y

    Article  CAS  Google Scholar 

  • Sigurd, O.H. and Sigurd O.S., 2008.The effect of temperature and fish size on growth, feed intake, food conversion efficiency and stomach evacuation rate of Atlantic salmon post-smolts. Aquaculture, 283 (1-4), 36-42. https://doi.org/10.1016/j.aquaculture.2008.06.042

  • Stickney, R.R. and McGeachin, R.B. 1983. Responses of Tilapia aurea to Semipurified Diets of Differing Fatty Acid Composition. In: L. Fishelson and Z. Yaron (Eds.), Proceedings of the International Symposium on Tilapia in Aquaculture, (Tel Aviv University Press,Tel Aviv, Israel), 346–355.

  • Takeuchi, Y., Yahag, N., Izumida, Y., Nishi, M., Kubota, M., Teraoka, Y., Yamamoto,T., Matsuzaka, T., Nakagawa, Y., Sekiya,M., Iizuka, Y., Ohashi, K., Yamada N., Kadowaki, T. and Shimano, H., 2010. Polyunsaturated fatty acids selectively suppress sterol regulatory element-binding protein-1 through proteolytic processing and autoloop regulatory circuit, Journal of Biology Chemistry, 285, 11681-11691

    Article  CAS  Google Scholar 

  • Teoh, C.Y., Turchini, G. M. and Ng, W.K., 2011. Genetically improved farmed Nile tilapia and red hybrid tilapia showed differences in fatty acid metabolism when fed diets with added fish oil or a vegetable oil blend, Aquaculture, 312, 126-136. https://doi.org/10.1016/j.aquaculture.2010.12.018

    Article  CAS  Google Scholar 

  • Tocher, D.R., 2010. Fatty acid requirements in ontogeny of marine and freshwater fish, Aquaculture Research, 41, 717-732. https://doi.org/10.1111/j.1365-2109.2008.02150.x.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

IC (investigation; visualization; writing—original draft; writing—review and editing); FG (investigation; visualization; writing—original draft; writing—review and editing); SB (investigation); SH (formal analysis); MEC (resources, funding acquisition); MSA (conceptualization, methodology, supervision).

Corresponding author

Correspondence to Imene Chetoui.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chetoui, I., Ghribi, F., Bejaoui, S. et al. Incorporation of ω3 fatty acids in the diets of Nile tilapia juvenile (Oreochromis niloticus L.): effects on growth performance, fatty acid composition, and tolerance to low temperature. Trop Anim Health Prod 54, 401 (2022). https://doi.org/10.1007/s11250-022-03394-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11250-022-03394-2

Keywords

Navigation