Skip to main content
Log in

Exploration of allelic variants in short tandem repeats (STRs) flanking milk production QTLs and their association with milk production traits in Indian water buffaloes

  • Regular Articles
  • Published:
Tropical Animal Health and Production Aims and scope Submit manuscript

Abstract

Short tandem repeats (STRs) are co-dominant, highly polymorphic marker loci, distributed throughout the genome and useful for identification and mapping of QTLs associated with variation in traits of economic significance. Allelic variants were identified in STRs located in close vicinity of cattle QTLs for milk production,, viz. BMS713, BM6404, BM4513, BM121, BM6105, TGLA245, BL1100, BMS1948, BMS711, BM1443, BM1706, BM6438, BM143, BM415, ETH131, ETH 2, and BM1329 in 109 water buffaloes of Murrah breed. All loci except TGLA245 exhibited polymorphism of varying degree. The observed number of alleles, effective number of alleles, PIC value, observed heterozygosity, and expected heterozygosity across all STR loci averaged 4.12 ± 0.22, 3.20 ± 0.22, 0.60 ± 0.04, 0.34 ± 0.05, and 0.66 ± 0.03, respectively. Goodness of fit (chi-square) and likelihood ratio (G square) test demonstrated that the population exhibited a deviation from HWE for all the loci. FIS was positive and ranged from 0.22 to 1.00. Least square analysis of variance exhibited significant effects of BM4513, ETH131, BM713, and BM6105 on first lactational total lactation milk yield, 305-day milk yield, lactation length, and dry period respectively. None of the STRs could exhibit significant effect on peak yield.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Data availability

The raw data is available in data registers in the laboratory.

Code availability

Not applicable.

References

  • Ashwell, M. S., C. E. Rexroad Jr, Miller, R. H., VanRaden, P. M. and Da, Y. 1997. Detection of loci affecting milk production and health traits in an elite US Holstein population using microsatellite markers. Animal Genetics, 28 (3): 216–222.

    Article  CAS  Google Scholar 

  • Ashwell, M. S., Y. Da, C. P. Van Tassell, P. M. Vanraden, R. H. Miller, and C. E. Rexroad, Jr. 1998. Detection of putative loci affecting milk production and composition, health, and type traits in a United States Holstein population. Journal of Dairy Science, 81: 3309–3314.

    Article  CAS  PubMed  Google Scholar 

  • Asif, M., Mehboob-ur-Rahman, Mirza, J. I. and Yusuf, Z. 2008. High resolution metaphor agarose gel electrophoresis for genotyping with microsatellite markers. Pakistan Journal of Agricultural Sciences, 45 (1): 75-79.

    Google Scholar 

  • Boichard, D., 1998. QTL detection with genetic markers in dairy cattle: an overview. 49. Annual Meeting of the European Association for Animal Production. Warsaw, Poland. ⟨hal-02769118⟩.

  • Botstein, D., White, R.L., Skolnick, M. and Davis, R.W. 1980. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. American Journal of Human Genetics, 32 (3): 314.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hu, Z.L., Fritz, E.R. and Reecy, J.M. 2007. AnimalQTLdb: a livestock QTL database tool set for positional QTL information mining and beyond. Nucleic Acids Research, 35(suppl_1): D604-D609.

  • Chen, H.Y., Zhang, Q., Yin, C.C., Wang, C.K., Gong, W.J and Mei, G. 2006. Detection of quantitative trait loci affecting milk production traits on bovine chromosome 6 in a Chinese Holstein population by the daughter design. Journal of Dairy Science, 89: 782–790.

    Article  CAS  PubMed  Google Scholar 

  • Czarnik, U., Walawski, K., Zabolewicz, T. and Pareek C.S. 2005. Preliminary evaluation of BM6438 polymorphism as a putative candidate marker for milk performance traits associated with a new breeding concept in Polish Black-and-White cattle. Annals of Animal Science, 5: 243–251.

    Google Scholar 

  • Debnath, J., Kumar, S., Das, A.K. and Rahim, A. 2020. Impact of microsatellite based selection on grower and layer economic traits in Rhode Island Red chicken. The Indian Journal of Animal Sciences, 90(9).

  • Debnath, J., Kumar, S., Das, A. K. and Rahim, A. 2019. Association of microsatellites with pre-housing body weights and age at sexual maturity of Rhode Island Red chicken. Indian Journal of Animal Sciences, 89(10):1118-22.

    Google Scholar 

  • Debnath, J., Kumar, S., Rahim, A., Yadav, R. 2017. Genetic variability in egg production-associated microsatellites in Rhode Island Red chicken. Indian Journal of Animal Sciences, 87 (11): 1379–1384

    CAS  Google Scholar 

  • Debnath, J., Kumar, S., Yadav, R. and Rahim, A. 2015. Microsatellite genotypes of sire influence early layer economic traits and mortality in Rhode Island Red chicken. Indian Journal of Poultry Science, 50 (3): 248-253.

    Google Scholar 

  • El-Kholy, A.F., Hassan, H.Z., Amin, A.M.S. and Hassanane, M.S. 2007. Genetic diversity in Egyptian buffalo using microsatellite markers. Arab Journal of Biotechnology, 10 (2): 219-232.

    Google Scholar 

  • Falconer, D. S. and Mackay, T. F. C. 1996. Introduction to Quantitative Genetics. 4th ed. England, Longman. 356 p.

  • Georges, M., Nielsen, D., Mackinnon, M., Mishra, A., Okimoto, R., Pasquino, A.T., Sargeant, L.S., Sorensen, A., Steele, M.R. and Zhao, X. 1995. Mapping quantitative trait loci controlling milk production in dairy cattle by exploiting progeny testing. Genetics, 139 (2): 907-920.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ihara, N., Takasuga, A., Mizoshita, K., Takeda, H., Sugimoto, M., Mizoguchi, Y., Hirano, T., Itoh, T., Watanabe, T., Reed, K.M. and Snelling, W.M. 2004. A comprehensive genetic map of the cattle genome based on 3802 microsatellites. Genome Research, 14 (10a): 1987-1998.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kappes, S.M., Keele, J.W., Stone, R.T., McGraw, R.A., Sonstegard, T.S., Smith, T.P., Lopez-Corrales, N.L. and Beattie, C.W. 1997. A second-generation linkage map of the bovine genome. Genome Research, 7 (3): 235-249.

    Article  CAS  PubMed  Google Scholar 

  • Kuhn, C., Freyer, G., Weikard, R., Goldammer, T. and Schwerin, M. 1999. Detection of QTL for milk production traits in cattle by application of a specifically developed marker map of BTA6. Animal Genetics, 30 (5): 333–340.

    Article  CAS  PubMed  Google Scholar 

  • Mekkawy, W., Hafez, Y.M., Attia, M., Abdel-Salam, S.A.M. and Abou-Bakr, S. 2012. Association analysis between microsatellite DNA markers and milk yield and its components in Egyptian buffaloes using a random regression model. Egyptian Journal of Animal Production, 49 (1): 9-18.

    Article  Google Scholar 

  • Meuwissen, T.H., Hayes, B.J. and Goddard, M.E., 2001. Prediction of total genetic value using genome-wide dense marker maps. Genetics, 157(4), pp.1819-1829.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mosig, M. O., Lipkin, E., Khutoreskaya, G., Tchourzyna, E., Soller, M. and Friedmann, A. 2001. A whole genome scan for quantitative trait loci affecting milk protein percentage in Israeli-Holstein cattle, by means of selective milk DNA pooling in a daughter design, using an adjusted false discovery rate criterion. Genetics, 157: 1683–1698.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nadesalingam, J., Plante, Y., Gibson, J.P., Atchison, J.L. and Wu, X. 1998. Multiple marker mapping of quantitative trait loci (QTL) for milk production traits on chromosome 1 in Canadian Holstein bulls. Journal of Dairy Science, 81 (Suppl. 1): 72.

    Google Scholar 

  • Navani, N., Jain, P.K., Gupta, S., Sisodia, B.S. and Kumar, S. 2002. A set of cattle microsatellite DNA markers for genome analysis of riverine buffalo (Bubalus bubalis). Animal Genetics, 33 (2): 149-154.

    Article  CAS  PubMed  Google Scholar 

  • Olsen, H. G., Gomez-Raya, L., Vage, D.I., Olsaker, I. and Klungland, H. 2002. A genome scan for quantitative trait loci affecting milk production traits in Norwegian Dairy Cattle. Journal of Dairy Science 85: 3124–3130.

    Article  CAS  PubMed  Google Scholar 

  • Olsen, H. G., Lien, S., Svendsen, M., Nilsen, H. and Roseth, A. 2004. Fine mapping of milk production QTL on BTA6 by combined linkage and linkage disequilibrium analysis. Journal of Dairy Science, 87: 690–698.

    Article  CAS  PubMed  Google Scholar 

  • Orru, L., Catillo, G., Napolitano, F., De Matteis, G., Scata, M.C., Signorelli, F. and Moioli, B. 2009. Characterization of a SNPs panel for meat traceability in six cattle breeds. Food Control, 20 (9): 856-860.

    Article  CAS  Google Scholar 

  • Ribaut, J.M. and Ragot, M. 2007. Marker-assisted selection to improve drought adaptation in maize: the backcross approach, perspectives, limitations, and alternatives. Journal of Experimental Botany, 58 (2): 351-360.

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Zas, S.L., Southey, B.R., Heyen, D.W. and Lewin, H.A., 2002. Detection of quantitative trait loci influencing dairy traits using a model for longitudinal data. Journal of Dairy Science, 85(10), pp.2681-2691.

    Article  CAS  PubMed  Google Scholar 

  • Ron, M., Kliger, D., Feldmesser, E., Seroussi, E., Ezra, E. and Weller, J.I. 2001. Multiple quantitative trait locus analysis of bovine chromosome 6 in the Israeli Holstein population by a daughter design. Genetics, 159: 727–735.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rushdi, H. E. 2018. Molecular analysis of microsatellites associated with milk yield and composition in Egyptian buffalo. Journal of Animal and Poultry Production, 9 (4): 227 – 233.

    Article  Google Scholar 

  • Rushdi, H.E., Moghaieb, R.E.A., Abdel-Shafy, H. and Ibrahim, M.A.M. 2017. Association between microsatellite markers and milk production traits in Egyptian buffaloes. Czech Journal of Animal Science, 62 (9): 384-391.

    Article  Google Scholar 

  • Sambrook, J. and Russell, D.W. 2006. Purification of nucleic acids by extraction with phenol: chloroform. Cold Spring Harbor Protocols 2006(1):pdb-prot4455.

  • Shokrollahi, B., Amirinia, C., Djadid, N.D., Amirmozaffari, N. and Kamali, M.A. 2009. Development of polymorphic microsatellite loci for Iranian river buffalo (Bubalus bubalis). African Journal of Biotechnology, 8 (24): 70-78.

    Google Scholar 

  • Sikka, P. and Sethi, R.K. 2008. Genetic variability in production performance of Murrah buffaloes (Bubalus bubalis) using microsatellite polymorphism. Indian Journal of Biotechnology, 7: 103 – 107.

    CAS  Google Scholar 

  • Spelman, R. J., Coppieters, W., Karim, L., Arendonk, J.A.M. and Bovenhuis, H. 1996. Quantitative trait loci analysis for five milk production traits on chromosome six in the Dutch Holstein-Friesian population. Genetics, 144: 1799–1808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Velmala, R., Vilkki, J., Elo, K. and Maki-Tanila, A. 1999. A search for quantitative trait loci for milk production traits on chromosome 6 in Finnish Ayrshire cattle. Animal Genetetics, 30: 136–143.

    Article  CAS  Google Scholar 

  • Wakchaure, R., Ganguly, S., Praveen, P.K., Kumar, A., Sharma, S. and Mahajan, T., 2015. Marker assisted selection (MAS) in animal breeding: a review. Journal of Drug Metabolism and Toxicology, 6(5), p.e127.

    Article  Google Scholar 

  • Weller, J. I. 2001. Quantitative trait loci analysis in animals. CABI Publishing. London. 287 pp.

    Book  Google Scholar 

  • Yadav, R., Kumar, S., Rahim, A., Debnath, J, and Bhanja, S.K. 2015. Influence of sires’ microsatellite genotype on pre-housing body weights and mortality in Rhode Island Red chicken. Indian Journal of Poultry Science, 50 (3): 239-243.

    Google Scholar 

  • Yeh, F.C. 1999. Microsoft window based freeware for population genetic analysis. Popgene Ver. 1. 31.

  • Zabolewicz, T., Czarnik, U., Strychalski, J., Pareek, C.S. and Pierzchała, M. 2011. The association between microsatellite Bm6438 and milk performance traits in Polish Holstein-Friesian cattle. Czech Journal of Animal Science, 56 (3): 107-113.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors extend their gratitude to The Joint Director (Research) and Director, IVRI, Izatnagar for providing intellectual inputs, physical resources, and funds for this research work.

Funding

The financial support for this work was provided by ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subodh Kumar.

Ethics declarations

Ethics approval

All necessary approvals had been taken from the competent authorities at the beginning.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vani, A., Kumar, S., Kumar, S. et al. Exploration of allelic variants in short tandem repeats (STRs) flanking milk production QTLs and their association with milk production traits in Indian water buffaloes. Trop Anim Health Prod 54, 222 (2022). https://doi.org/10.1007/s11250-022-03215-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11250-022-03215-6

Keywords

Navigation